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I. SUI_RY

A sufficient condition given for the as_uptotic stability of

a continuous Single monotone nonlinearity system with slope confined

to (0, k 2) having a transfer function G(J_) is

Re (i + X(J_o) + Y(J_o_ + aJm)(G(J_) + llk 2) >_ 0

where = is a positive number, x(t) ! 0 for t ! 0 and zero for t > 0,

y(t) i0 for t > 0 and zero for t < 0 and f (Ix(t) I + ly(t) I)dt < i.

As is shown by examples the new criterion gives better results than

existing criteria. Also developed are improved stability criteria

for the case of the nonlinearity being an odd monotone function and for

a nonlinearity with a monotone bound having a certain degree of symmetry.

A number of theorems _iving bounds on the response of the single

monotone nonlinearity system with initial condition and external excitation

are presented. Under certain circumstances these bounds, which are useful

in design, can also be employed to show Liapunov stability.

Improved time-frequency domain stability criteria are also developed

for systems with a single time varying nonlinearity, for smmple data systems

with a single time invariant nonlinearity, amd for continuous nonlinear

systems having a number of nonlinearities.
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II. INTRODUCTION

This work is based upon the observation that if two functions

o(t) and _(t) satisfy o_(a) > 0 for o # 0, and _(_) is a monotone
T

increasing function of _, a bound can be placed upon of [a(t) * A(t)]_(t)dt
T

in terms of of o(t) $(t)dt provided that A(t) satisfies certain con-

ditions. This relationship is used in Chapter I to give improved

conditions for the asymptotic stability of a continuous time invariant

system with a single monotonenonlinearity. A modification of this

proof results in two other theorems, one for the asymptotic stability

of a system with a single odd monotonenonlinearity and the other for

a system with a nonlinearity having a monotonebound. In Chapter II

bounds are obtained on the response of the continuous system whose

stability was discussed in Chapter I. In addition to giving bounds

on the response with an initial condition excitation, bounds are

also developed on the response for an external input that is Fourier

transformable in a finite time interval. If the input is itself

bounded, these theorems permit the showing of Liapunov stability.

Chapter III extends the results of Chapter I to systems having a single

time varying nonlinearityp sampleddata systems with a single nonlinearity,

and continuous systems with a numberof time invariant nonlinearities.



III CHAPTERI. THESTABILITYOF SINGLENONLINEARITY
CONTINUOUSSYSTEMS

A. Introduction

This chapter deals mainly with sufficient conditions for the

asymptotic stability in the large of the system shown in Figure I with

_(o) a continuous monotone increasing nonlinearity. Several recent

works have considered this problem [1-4]. Reference [_ by one of the

authors concerns a part of the research presented in this report,

namely corollary 3 of theorem i.i and a simplified version of

theorem 1.2. Brockett and Willems [3] presented a sufficient

condition for the asymptotic stability of this system with the

nonlinearity being a continuous monotone function. With 0 _ d_/do ! k 2,

it was shown that

Re[Z(J_) (G(J_) + llk2)] >_ 0

is a sufficient condition for asymptotic stability where Z is either a

physically realizable RL driving point impedance function or its recip-

rocal. Z allows the angle of G(J_) + i/k 2 to lie outside the ± 90° band

in only one direction. In other words, the polar plot of G + i/k 2 is

restricted to lie in three quadrants. The present work presents a

theorem for the monotone nonlinearity which permits a larger class

of Z multipliers to be used, thereby allowing G + I/k 2 to lie in four
I

quadrants. The same approach is applied to give improved conditions

for the asymptotic stability of a system with a single odd monotone

nonlinearity and for a system with a nonlinearity having a monotone

bound.
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In using the following theorems, if the nonlinear characteristic

satisfies klla I < I_(_)l, the linear transformation _l(a) = _(a) - kla

giving Gl(S) = G(s)/(l + klG(S)) should first be carried out, provided

that in the case of theorem i.i _I(_) is a monotone increasing function.

The theorems are then applied to the transformed system with nonlinear

characteristic _l(S) and transfer function GI(S).

In the following work the notation _(s) is used when the

properties of the nonlinearity are under consideration and _(t) is

used when the time varying variable _(a(t)) is being discussed.

B. A Theorem For Monotone Nonlinearities

Theorem i.i

For the system shown in figure i let the following hold:

a. 0 ! d_(a)/da ! k 2 where k2 is a positive number, both _(_)

and a - _(_)/k 2 = 0 only for _ = _(_) = O, and d_(_)/d_ be

a continuous function of s.

b. G(s) = N(s)/D(s) with the degree of N(s) at least one less

than the degree of D(s) and with the zeros of D(s) in the left

half s plane. N(s) and D(s) are assumed to have no common

factors in the right half s plane or on the J_ axis.

Co Lim f 2 = -
O

I°I ®
tim I_(o) I = hls I where h > 0.
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Then a sufficient condition for asymptotic stability in the large is

that

Re[Z(s)(G(s) + i/k2)] _ 0 (i.i)

for s = J_ for all real w where

Z(s) = i + _s + X(s) + Y(s). (1.2)

The time function x(t) = 0 for t > 0 and y(t) = 0 for t < 0. Both

of these functions are assumed to be the sum of a piecewise continuous

function which is Fourier transformable and shifted impulse functions

that satisfy

f (Ix(t)[ + ly(t)[) dt < i (1.3)

with both x(t) and y(t) ! 0. The magnitude of the plmcewise continuous

component of x(t) is assumed to be less than £ exp (ft) where £ and f

are positive numbers. The contribution of the impulses to the integral

is to be taken as the _rengths of the impulses. _ is a nositive number.

Corollary i. In addition to the conditions of theorem i.i, if _(a) is an

odd monotone nonlinearity that is, if _(o) =-_(eo), the assertion of the

theorem holds with (i._ becoming

f (Ix(t)] + ly(t)]) dt < i where x(t) and y(t) are

permitted to take on positive as well as negative values.

Corollary 2. If G(s) has poles on the Jm axis, G(s) is required to be

stable in the limit; that is, for an arbitrarily small pesitlve number



E, the zeros of I + EG(s) must all be in the left half s plane. Also,

the slope condition becomes_ _ > 0 and (i.i) becomes_ _2 > 0 where _ and

_2 are small positive numbers. The other conditions are unchanged.

Corollary 3. If c is not satisfied, the assertion of the theorem

holds with x(t) required to be identically zero.

Since the statement of the theorem is somewhat involved, a

discussion of its various conditions is in order. The slope bound

condition a includes a requirement that d_(o)/do be a continuous

function of _ whose purpose is to insure the Fourier transformability

and plecewlse continuity of o(t), a(t), and _(t); any other property

insuring this result would suffice. Condition b is used to guarantee

that if _(t) and _(t) are bounded for all t and approach zero as

t ÷ _, the other state variables of the system have this same type

of behavior. Im addition, having the degree condition holding a11ows

the _s term to be used in the frequency domain criterion since it

insures the Fourier transformability of that component of do(t)/dt due

to -_(t). The first part of condition c permits the nonlinear character-

istic to have a behavior which ranges from that of a saturation function

to a linear characteristic for large values of o, with the first man-

tioned function being allowed but not the second. The second part of

this condition permits a linear characteristic.

C. Application of the Theorem

In applyin_ the theorem it is convenient to first draw the log

magnitude and phase plots of G(J_) + i/k 2. Since IG(J_)I approaches zero

for _ sufficiently large, above a certain frequency, _c' IG(J_)I < i/k2'
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and hence the phase angle of G(j_) + i/k 2 will be less than 90 °. The

real part condition will be satisfied with Z(s) = i for _ > _ . If it
-- c

is also satisfied for _ < _ , asymptotic stability will be guaranteed.
c

If the real part condition is not satisfied for _ < _ , a
c

frequency varying Z(J_) must be chosen in an attempt to show stability.

Since the real part condition is already satisfied for _ •mc, Z(J_)

should not disturb this property. The general philosophy to be followed

in searching for a suitable Z(j_) function is to observe the frequency

bands in which the angle of G(J_) + i/k 2 lies outside the ± 90 ° band and

then to try to choose a Z(J_) function such that its phase angle when

added to that of G(J_) + I/k 2 gives a resultant phase angle which lies

within the ± 90 ° band.

D. Two Z(s) Multipliers

n s + ai m s - c i

i. _ (s + bl) _ (s dj ) + usi=l j -1

0 < a.l < bl < a^z < b2 < ... a < bn n

< d
0 < cI < d I < c2 < d2 < ... cm m

The first product is an RL impedance function and the second is

transformed into an RL impedance function by replacing i with -s.

Therefore, the poles and zeros of the first product alternate along

the negative real axis while the critical points of the second product _re
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along the positive real axis of the s plane. Expressing this function

in a partial fraction expansion gives

n fi m lj
i- l [ +as

i= I s + b i j=l -s + dj

where fi and lj are positive numbers. Since the partial fraction

expansion coefficients are negative for both the left half and right

half plane poles, the time function corresponding to these poles is
+_

non-positive. Usin_ F(O) ", / f(t)dt, where F(J_) is the Fourier
mOO

transform of f(t), in conjunction with

n s+ ai m s - cj

(_) n (s dj) - 1i-i j=i

gives

n ai

(_7)
i=l l

m
(d.) - i as the area associated with x(t) + y(t)

j=l 3

for this Z(s). Since these time functions are non-positive and the magnitude

of this area is less than I, the given function is an allowed one for general

monotone nonlinearities.

The phase characteristic of this function is more flexible than the

Z(s) multipliers considered in [4] because it is possible to switch ba_k

and forth from a leading to a lagging function or vice versa if desire_.

A typical phase angle plot is shown in Figure 2 for the particular case

n - 2, m - 2. It is to be noted that the magnitude of the angle can

approach 90 ° as closely as desired.
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Example i. Brockett and Willems [3] indicated that

G(s) =
2

s

4 s3 s2s +a +b +c s+d

with a, b, c, and d chosen such that the poles of G(s) lie in the

left half s plane was a worthwhile function for future dtudy since

their criterion did not apply to it. This G(s) is to be considered

assuming that k 2 is large but finite with the nonlinearity required

to be monotone. An angle plot of G(Jm) + i/k 2 is given in Figure 3.

Let Z(s) = _-s + p)(s + r)/(-s + q) with p < q. Division of the

numerator by the denominator shows that this Z(s) belongs to the

function 1 class with n - 0, m = i. The reason for this choi£e of

Z(J_) is that its angle lags at low frequency and leads at high

frequency, which is the required behavior if the angle of the product

function is to lle within the _ 90 ° band. The variation in angle

for G(J_) + i/k 2 at low frequency can be handled by choosing p

sufficiently smal]. However, a problem is encountered in following

the variation from near + 180 to - 180 ° .

real poles located at - a I, - a2, - a 3,

is with s = J_

(-s + p) (S + r)
{-s+q)

First, let G(s) have four

and - a4. Then Z(s)(G(s)+i/k 2)

2
S =m

[('S + al)(S + a2)(s + a3)(s + a4)'] + R(S)k2

where R(s) is the even part of Z(s).

above with q = aI and r - a2 is

The angle of the first term
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180 ° - tan -I _ _ tan -I ____ tan -I

P a3 a4

The value of p can be chosen small enough such that at low frequency

when the magnitude of the first term is equal to R(jm)/k 2 which

itself is positive, the above angle is less than 90° . Since (1._is

satisfied, asymptotic stability in the large is guaranteed.

Next, consider the case of G(s) - s2/((s 2 + 2 _mm s + _m 2)x

(s + al)(S + a2)) where _ < i and _m > O. The angle of

Z(j_) G(J_) in this case with q and r chosen equal to aI

and a2 respectively is

180 ° - tan -I _ _ tan -I
P 2 2)

(_m -

As before, a suitable choice of p will make the angle of Z(J_)(C(j_) + i/k2)

lie in the +-90° band for all _ and asymptotic stability in the large

has been shown.

2
Finally, let G(s) = s2/(s2- + 2 _mm s + em ) . The angle of

z(J_) c(Ju) is, w_.thr = q'= _m'

180 ° _ tan -I _ +2tan -I
P

[I - 2_ - (___.)2].
{o
m m

2

[1 - (1 - 2_)("_--') ]
m

If _ > .5, and p suitably chosen,(l.l)is aatisfied and asymptotic

stability in the large is demonstrated. This Z(s) will not satisfy

(I.i) for _<.5 and hence no information is available on the stability
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of the system. Fitts [5] has shown that periodic solutions exist

3
with _(o) = _ and _ = .01 for the 2 pair complex conjugate pole

case. The author has obtained steady state oscillations with _(o)

an odd saturation function for _ = .045 and with _(o) an unsymmetrical

saturation nonlinearity for _ = .075.

In summary, with a monotone nonlinearity asymptotic stability

in the large can be guaranteed for the given G(s) if the poles are all

real, if two are real and the other two complex, or if all four are

complex provided that _ > .5.

n

2. i + [ ai exp(bls) + as with the bi'
i=l •

s being real numbers,

> O, and [ lail < 1.
i=l

If all the ai's are negative, this

multiplier can be used for a general monotone nonlinearity but if

some are positive, the nonlinearity must be an odd function. The

n n

angle of this Z(s) is tan -I (( _ a i sin bi_ + _)/(i + [ ai cos bi_)).
i=l i-I

This multiplier is capable of providing a rapid change in phase shift

from near -90 ° to +90 ° , but the periodic nature of the exponential

part of this function can make it a difficult one to work with.

n

A useful special case results when _ ai exp(biJ_ ) =
i=l

n/2

J _ 2a i sin bi _ with
i--i

n/2

this case is tan-l(

i=l

n/2

_ 21ail < 1.
i=l

The an_le of Z(J_) for

2a i sin b i _ + _ _) which is simpler than

the general result. On the other hand, the angle variations in the

function are constrained; if a is a very small number, the angle
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lies in a _ 45° band at low frequencies. The use of this class of

multiplier is illustrated by the following example.

Example 2. Dewey and Jury [2] considered the case of G(s)=40/s(s+l)(s2+.8s+16)

using their criterion for monotone nonlinearities and showed stability

for nonlinearities having a slope restricted to (c, 1.43). The system

is stable for linear gains in the sector (_, 1.76). Because G(s) has

a pole on the J_ axis, corollary 2 must be applied rather than the

theorem. From the root locus plot _or i + EG(s), where ¢ is a small

positive number, it is seen that G(s) is stable in the limit. From the

Figure 4 plot of the angle of G(J_) + 1/1.76, the angle lies outside the

± 90° band in the frequency ranges 0-2.75 and 2.97-3.75, lagging in the

former case and leading in the latter. Altho_gh the peak deviation

outside the ± 90 ° band is only 36° in the lagging direction and 16 °

in the leading direction, the peak slope of the angle in _aking the

transition from outside the ± 90 ° band to the inside is about 60°/radian,

making it impossible to use a Z(s) of the function i class. The magnitude

of the slope of a Z(s) function belonging to the type I class is less

than or equal to the slope of the angle of the double pole function

2 tan -I _/a which is 2a/(_ 2 + a2). For _ = a = 3, approximately the

values which would have to be chosen in attempting to use the function,

the slope would be about 20°/radian, less than half the required value.

Therefore, a function of the type 2 class is chosen in an effort to

show asymptotic stability. Since the required angle for Z(s) il less
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than 45 °, and a leading angle followed by a lagging an_le is required,

-i0.
Z(Jm) was chosen equal to i + J.999 sin l.llSm + i0 jm. Comparing

this function with the time domain condition (1.3) shows that _(o)

is required to be an odd monotone function. The 1.118 coefficient

was picked to give an angle for Z(jm)(G(jm) + 1/1.76) at m = 2.98,

the frequency at which a zero occurs on the jm axis for G(Jm) + 1/1.76,

of _ 90 °. The amplitude of the sine term was chosen close to i to

give a large change in angle while still satisfying the integral

condition(l.3)and the i0 -I0 coefficient was chosen so that the _ J_ term

does not come into play at low frequencies. The slope of the angle of

this multiplier at m = 3 is about 60°/radian. The plot of the an_le

of the product function also given in Figure 4 shows that the an_le

always remains within the ± 90o except for m = O, 2.98, and _ at which

frequencies the angle magnitude is 90° . Calculation of the real part

of the product function at m = 0 gives .738. If k 2 < 1.76, the real

part of the product is positive at _ = 2.9R. At _, th_s quantity is

1/1.76. Therefore, since (l._is satisfied with an inequality sign, all

the conditions of corollaries 1 and 2 are satisfied and asymptotic

stability in the large is guaranteed for slopes in the sector (e, 1.76)

for _(a) equal to an odd monotone nonlinearity.

In order to find an enlarged sector of assured asymptotic

stability for the general monotone nonlinearity, Z(Jm) = i - .95

exp(-l.045J_) + 10-10jm was chosen for use with G(jm) + 1/1.7. The

reasons for the choice of this function and the parameters for this

case are identical with those of the previous case except that the

coefficient of the exponential was =hosen £o give a zero phase shift
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for Z(jm) in the middle of the transition region for the angle of

G(Jm) + 1/1.7. The slope of the angle of this Z(jw) at m -- 3 is

about 30°/radian. Therefore, k 2 was reduced to 1.7 when it was

found to be impossible to satisfy (l.l)with the given form of Z(Jm)

and k 2 - 1.76. Figure 5 _ives the pertillnt plots for this example

which show that the angle of Z(Jm)(G(_) + 1/1.7) is in the * 90 °

band. At m = 0 the angle of the product is -90 ° but the real

part is 2.38 while at m = =0 the angle is 90° with the real part being'

(I-.95cos 1.045m)/1.7. Therefore, the conditions of corollary 2 are

satisfied and asymptotic stability in the large is guaranteed for

the general monotone nonlinearity with slope _n the sector (e, 1.7).

E. Proof of Theorem i.i

Let the system be excited by initial conditions. The assumptions

on G(s) and on _(o) are sufficient to insure the continuity and Fourier

trans£ormability of o(t), o(t), and _(t) on any finite time interval

[6] - [9]. Use will be made of these properties at several points

in the proof. First, it will be shown that

/
O

T
n

((6(t) + x(t) + y(t)) * (on(t) - _n(t)/L2))_n(t) dt =

e(T n)

T
n

f _on(t) - _n(t)/k2) _n(t)dt

O

(1.4)
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where c(T n) is a positive number and * denotes convolution. The

variables on(t) and _n(t) are equal to their non-superscripted

counterparts in (0, Tn) and zero outside this interval. Let

x'(t) and y'(t) denote x(t) and y(t) respectively with_e

impulses removed. The integral involving these functions on

the left hand side of (1.4) is given by

T
n o

f f
O --oo

x'(1) (on(t-%)-_n(t-%)/k2)_n(%) d_ dt +

T
n co

f f
O o

y'(1) (on(t-l) - _n(t-l)Ik2) _n(t) d_ d_ Ci.5)

since x'(1) = 0 for X > 0 and y'(l) = 0 for X < O. Because the

primed functions, on(t) and _n(t) are continuous functions of t,

and the integrand is non-zero over only a finite interval of time,

the order of integration may be interchanged [I0] to give

o

f ×'Cx)

oo

f y' (_)

o

T
rl

f (on(t-X) - _n(t-t)/k2) _bn(t) dt dl +
o

T
n

f con(t-X) - _n(t-X)/k2) *n(t) dt dX.
o

(1.6)

u

With the impulsive component of x(t) given by I ai 8(t + hi) and
i=l

v

that of y(t) by _ ci _Ct - di), where ai, bi, ci, and di are
j=l

positive numbers, their contribution to the left hand side of (1.4) is

T
u n

l ai f
i=l o

v

[ ci
J=l

(on(t+bi) - _n(t+bi)/k2) _n(t) dt +

T
n

f (on(t-di) -_n(t-di)/k 2) _n(t) dt .
o

(1.7)
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Appearing. in both (].6) and (1.7) is an integral of the form

I(T) =

T
n

f (an(t - T) - _n(t - T)/k2) _n(t) dt
O

(1.8)

where T is a real number. At this point a' positive bound will be

developed on (I.R). Lpt (1,8) be rewritten as

T

n _+(t - T)
I(T) f n= (a+(t - T) ) ¢+(t) at +

o 1<2

T
n _n(t - T)

f (on(t - T) - ) _n(t) dt +
o k2 -

Tn +_(t - T)
f (a+(t - T) - ) +,n(t) 8t +
o 1% -

T
n _n(t - T)

- n(t) dt (1 _)
f (on(t_ - T) - k2 ) ¢+
o

where the + and - subscripts refer to the positive and neRative

values of the associated functions, respectively: as sn example

_(t) is equal to _n(t) when _n(t) > 0 and zero otherwise. The

lemma may be applied to the first two inteRrals since an(t) and

_n(t) are continuous functions of time that are zero outside (0, T )
n

the two functions forming the integrand of both integrals are

non-neRative and non-positive respectively, and

d(a-_(a)/k2)/d_(o) = [d(o-_(o)/k2)/do][do/d_(o)] -

[I - (d$(a)/do)(1/k2)][do/d_b(o)] >_ 0 , (1.10)
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showing that o-_(o)/k 2 is a monotone increasin_ function o6 _(o).

Applyin_ the lemma _ives

T _+(t T) T _nn - n _ (t-T)
I (r) _ f n

< O (O+(t - T) k2 ) _+(t) dt + of (on(t-T) - 'k2 )x

T ¢_(t) T n
n n & _(t) }n

6n(t).... dt < of (o+(t) - %---) 8+n(t) dt + of (°n(t)- - k2 ) _(t) dt

T
n

--f (O(t) -!i!)_) ¢(t) dt . (i.ii)

o _2

Usin_ (1.6) and (1.7) Rives for that part of (1.4) involvin_ x(t)+y(t)

4"oo u v

f (x'(X) + y'(1))I(1) dl + [ ail(-bi) + [ cil(di).
-® i=1 j =l

(1.12)

Now since x'(k) y'(1) a. and ci are non-positive application

of (i.ii) and (1.12) yields

T
T1

f ((x(t) + y(t)) * (on(t) - _n(t)/k2)) _n(t) dt >_
O

!I V

If (x'(X) + y'(X)) d), + _ a i + _ ci] I(O) .
-® i=l j=i

(1.13)

Using (1.3) from the statement of the theorem it follows that the

left hand side of (1.13) is greater than -I(O) and hence that the

assertion of (1.4) is correct.

The next step in the proof is to apply Parseval's theorem to a

part of (1.4) and to use the frequency domain condition (I.i). Let

on(t) = o_n(t) + Gin(t) and on(t) - o_n(t) + oin(t) where o_n(t) and

• n

o_ (t) are those components of on(t) and on(t), respectively, due to the
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feedback signal -_(t) and aln(t) and _in(t) are due to the initial

¸¸.¸I¸¸

\.\,
\..

condition excitation of the system. Then

T
n

I
O

((6(t) + x(t) + y(t)) * (on(t) - cn(t)Ik2)) _n(t) dt +

T T
n n

f _n(t) _n(t)dt = f

O o

((_(t) + y(t)) * (o_n(t) -_n(t)Ik2)) _n(t) dt +

T
n

/
O

(x(t) * (ocn(t) -cn(t)/k2)) _n(t) dt + a

T
n

n

f _ (t) an(t) dt +
O

T
n

+ f ((6(t) + x(t) + y(t)) * oln(t)) an(t) dt +
O

T
n

f _in(t) _n(t) dt.
o

(1.14)

Sevezal substitutions will be made in the integrands @n the right

hand side of (1.14). In £he first and third integrals let osn(t) be

replaced by o n *(t) and o_n(t) by _¢n *(t) respectively whore

and

n * -i
(_. (t) = - F [G(J_) F[¢n(t)]]

• n *

o¢ (t) =-F -I [J _ G(J_) F[_n(t)]]

-i
with F and F denoting the direct and inwerse Fourier transform

operations, respectively. The values of these integrals are unchanged

since the starred quantities are equal to their unstarred counterparts

n *

in (0, Tn). The value of _¢ (t) for t > Tn does not affect the first

since _(t) + y(t) - 0 for t < 0 and sn(t) - 0 for t > T n, Theintegral

latter reason also shows that the third integral is not influenced by

• n *
the values of _. (t) for t > T . In the case of the second integral

n
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x(t) bein_ non-zero for t < 0 implies that a_n(t) cannot be

n w

replaced by c_ (t) without changing the value of this integral.

n w

Therefore, the portion of o_ (t) for t > Tn must be taken into

account in making the substitution. Let

\

n * ocn(t ) o d(t)o¢ (t) = + (1.15)

d n*

where o,• (t) is that component of o._ (t) occurring in (Tn,_). With

these substitutions the first three integrals on the right hand side

of (i.14) are

T
n

f ((8(t) + y(t)) * (a¢
o

n*

(t) - cn(t)/k2)) _n(t) dt +

T
n

f
O

n* cn
(x(t) * (o_ (t) - (t)/k2)) ¢n(t)dt +

T
n

f b_n*(t) on(t) dt
0

T
n

f
o

(ocd(t) * x(t)) cn(t) dt . (1.16)

For the final step in the proof ,a bound is required on the

last integral of (1.16) in terms of ]_n(t)]max, the largest value of

I (_n(t) I in (0,Tn).

t

If
0

where g(X) = F-I(G(J_)).

lo@d(t)] is given by

_(X) Cn(t -X) dX] t > T ,
9 -- n

(1.17)

Because of condition b of the theorem, it is

possible to find two positive numbers q and r such that ]g(l)] < q exp(-rl).

Using this bound gives

t

lo¢d(t)] 5_ f
t-T

n

q exp(-rX) l¢n(t)] max dX =

(q/r) ]¢n(t)] exp(-rt) [exp(rT_)-l] t • T
max n J _ n

O (1.18)
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The lower limit on the intezral has been chan_ed to t - T since
n

_n(t) is zero outside (0,Tn).

The piecwwise continuous and impulsive components of x(t) will

be considered separately. Since Ix'(t) I < _ exp(ft), using (1.18)

gives

lo_d(t) * x'(t) I !

[,n(t) l
r max

-T +t
n

I
exp(fX) exp(-r(t-X)) [exp(rTn)-l]dX

£ q

r(r + f)
[¢n(t)[

max [exp(rTn)-l] exp(-(r+f)T n) exp(ft) (i.19)

0 < t <T

Using this result gives

T
n

f (o_d(t) * x'(t)) _n(t)dt
O

T
n

i[¢n(t) [max f [o_d(t) * x' (t)[dt
O

<

£ q[_n(t)[2 max

rf (r + f) (i - exp(-rTn)J(l - exp(-fTn) ) <__Ml[_n(t )[2
max

(1.20)

where M I is a positive number independent of T .
n

For the impulsive case,

and

u

osd(t) * x(t) = [ a i o d(t÷bi)
i=l

T
n u

[ f (o_d(t) * x(t)) _n(t)dt] 5_ [ ]a i]
o i=l

(1.21)

T
n

I o_d (t+bi)cn(t)[at.
o

(1.22)
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If bi < Tn, the use of (l.lq) in the right hand side integral of (1.22)

_ives

T T
n n

f l°_d(t+bi )_n(t)dtl --< qr l_n(t) 12 [exp(rTn)-l] f

o max Tn-b i

exp(-r(t+bi))dt

(1.23)

The lower limit on the right hand side integral is Tn-b i since

o_d(t÷bl ) - 0 for t < b i - Tn. Evaluating (1.23) gives

r2 l_n(t)l2max [l-exp(-rTn)] [l-exp(-rbi) ] --<M2i I_n(_t)12max
(1.24)

where M2i is a positive number. Finally, if bi > Tn, the left hand

side of (1.23) is less than or equal to

Kr l_n(t)12max[exp(rTn )-I]

T
n

f exp(-r(t+bi)_dt = _-2l_n(t) 12ma x
0 r

[exp(-r(bi - Tn)) - exp(-r hi)][1 - exp(-r Tn) ] < M3il_n(t) l 2-- max

(1.25)

where M3i is a positive number. Using (1.20), (1.24), and (1.25) gives

T
u

I f n(o_d(t) * x(t)) _n(t)dt] _< (MI + [
o i=l

lailM 3) l_n(t) l 2 max

- Nl_n(t) l 2max (1.26)

where M 3 is the largest of the M2i,s and M3i,s and M is a positive

number independent of T . That is the desired bound.
n

Since _n(t) is zero outside (O,Tn) , the limits on the first 3

integrals of (1.16) may be changed to (-®,_). Also, because of the
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conditions on the various functions involved, Parseval's Theorem is

applicable to these integrals. Its application _ives

+_

f ((8(t) + x(t) + y(t)) * (o_ n* (t) - _n(t)/k2)) _n(t) dt+

f _ n*(t ) _n(t)d t = _ 1__. _ ((l+X(Jm) + ¥ (J m) ) (g (J m) + 1/k 2)

+ aJ m G(Jm)) IF(_n(t)]12d_ (1.27)

Since the imaginary part of the integral on the right hand side of (1.27)

is zero, (1.27) may be rewritten as

i
m

27

+m

f_.. Re(1 + X(J_o) + Y(J_o) + aJ_o)(G(Ja,) + l/k 2) JF[_n(t)ll2d,,,.

(1.28)

From (l._it follows that (1.28) is non-positlve. Combining (1.4),

(1.14), (1.16), (1.26), (1.27), and (1.28) gives

T
n n

C(Tn) f (on(t) - _n(t)/k2)_(t)dt +a@(T n) -¢_$(0) <
0

T T
n n

(oqbd(t) nIf , xCtl) Cb(tldtJ + If (o i (t) +(x(t) * oin(t)) +
0 0

(y(t) * oin(t)) + aoin(t)) cn(t) dtJ (1.29)

< NlCn(t) l 2 + PJ#n(t)Imax_ax
_1.30)

where

p=

O0

f
0

Joi(t) + x(t) * ot(t) + y(t) * oi(t) + aoi(t)Idt
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and

o(T n)
(T n) " f ¢(o) do.

O

Therefore,

_(Tn ) < 1 [M lCn(t) l 2 + elCn(t) Imax ] + ¢(0).
-- (_ max

(1.31)

Using the approach given in Lefschetz [II], let T be chosen such that
n

I_n(t) Imax noccurs at T . Then with the first part of condll_on c

hblding, it follows that o and hence _(c) are bounded; Lf this were

not the case, inequality (1.31) would not hold for large values of

Ioi. If the second part of condition c holds, a quadratic Liapunov

function may be found usinK the approach of Rekasius [12] that

shows the 5oundedness of _ and _(o).

Since the right hand side of (1.31) is bounded, it follows from

T

(1.30) that f n (on(t) - _n(t)/k2) _n(t)dt is bounded, from which
O

asymptotic stability in the large follows, using the arguments given

in Aizerman and Gantmacher [13]. This completes the proof of the

theorem.

In order to prove corollary i, the lemma is applied directly

to (1.8) to give If(T) 1 5_ I(0) instead of I(T) <__I(0). (1.131 then

becomes

T
n

I f ((x(t) + y(t)) • (on(t) - ,n(tl/k2)) ,n(tldtl i
O

+_ U V

If (l_'(x)l + ly'(X) l)dX + [ fall + [ Icil] I(O). (1.32)
-® i-i j-i

!
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Using the condition of this corollary, it follows that the left

hand side of (1.32) is less than or equal to I(0), from which (I._)

follows. The remainder of the proof is unchanged. This completes

the proof of corollary i.

To prove the assertion of corollary 2, it is first shown

that if

Re Z(G + i/k 2) >___2 > 0,

Re Z(G/(I + cG) + i/k 2) >___3 > 0

for e sufficiently small. 63 is a positive number. By a straightforward

calculation Re Z(G/(I + zG) + i/k 2) is

Re Z (C + i/k 2) + c(Re Z ) [IGI 2 (I + e/k 2) + 2(Re G)/k2]

(i + cR) 2 + (eX) 2

The first quantity in the numerator is non-negatlve. Since Re Z is

non-negative, the second quantity in the numerator may be negative if

-_k 2 +E) < Re G < 0. For this interval E must be chosen small enough

such that the numerator is positive. This is guaranteed by havln_

-62k 2

c < 2Re Z Re G

in the interval. Let the linear transformation _i(o) = _(o) - ¢o

be applied to the system. Then,G 1 = G/(I + e G). The stability of

the transformed system will guarantee the stability of the original

system. If e is chosen to be less than both 6 and the right hand

side of the e inequality, the transformed system will satisfy the

conditions of the theorem for the noncritical cases. Q.E.D.
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The proof of corollary 3 follows directly from the proof

of the theorem with x(t) - 0. (1.311 becomes ¢(Tn) --e< [ Itn(t) Imax + ¢(0).

Since _(o) is a monotone increasing function of O, for 1oi sufficiently

large the left hand side of this inequality will become greater

than the right, showing that o(t) and _(o(t)) are bounded. The

remainder ol the proof is mnchan_ed.

F. Theorem for a Nonlinearity With a Monotone

Bound

This theerem is an improved version of one given in [4]. The

two improvements consist of permitting Z(s) to have a corresponding

time function that is non-zero for t < 0 and of taking the symmetry

of the nonlinearity into account, resultin_ in x(t) and y(t) being

allowed to take on positive as well as negative values.

Theorem 1.2. For the system given in figure 1 let the following

conditions hold:

a. ASm(O) o ! $(o) o ! BSm(°) o, where A and B are real

numbers satisfying 0 < A ! i and I _ B < -, ¢(0) = tm(0) = O,

o @(o) < k 02 where k > 0 and o Sm(O) • 0 for o _ 0,

d_(o)/do is a continuous function of o, _m(O) is a

continuous monotone increasing function of 0 having an

odd part _mo(O) that satisfies Itm(O) I ! Cltmo(°)l and

I,mo(O)l ! DI%(o)I.

b. Conditions b and c of theorem 1.1.

Then a sufficient condition for asymptotic stability in

the large is that
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Re [Z(Jm) G(Jm) + E (G(Jm) + i/k)] > 0

for all real m where E is a non-negative number.

is defined as in (1.2) but (1.3) becomes

4_
BCD
-x- (I +

(x'+(t) + y'+(t)) dt + _ ai + _ ci] -

A {x'-(t) + y'-(t))dt + [ a i + _. ci ] < i (l.34)

where x'+(t) y'+, ai+ +, , and ci are the positive portions or values

of the corresponding non-superscripted functions or numbers and

x'-(t), y'-(t), ai , and ci are the negative portions or values

of the corresponding Bon-superscripted functionm or numbers.

Proof. Starting with (1.4) of the proof of theorem i.I, let this

equation be replaced by

T T
n n

f ((6(t) + x(t) + y(t)) * an(t)) _n(t)dt = C(Tn)of
O

on(t) _n(t)dt

(1.35)

as the condition to be shown. Repeating the steps used to obtain

(1.6) and (1.7) gives

o T n

f (x'+(x) + x'-(x)) f
--¢o O

T

f® (y'+(x) + y'-(x)) f n
0 0

o(t - t) _n(t)dt dX +

o(t - X) _n(t) dt d,_ (1.36)

and
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T T
n n

u

[ aj f an(t + h i) _n(t)dt + [ a t f on(t + bi)_n(t) dt
o 0

T T
n n

+ [ ei + f on(t-dr) _n(t)dt + _ c t f on(t-di)_n(t)dt.
O o

T

I(T) then becomes I(T) - f n cn(t _ T) _n(t)dt. At this point the
0

proof differs from that of theorem i for it is desired to develop

(1.37)

both positive and negative bounds on I(T). First a bound Is

developed on II(T) I.

T

II(T) I <__B f n ion( t _ T) _mn(t)[dt
O

T T
n n

n

<__BC f Ion(t - T) #too (t) ldt i Be f
O O

on(t) _mon(t)dt

(l.3S)

where use has been made of the lemma. _mn(t) - _mn(o(t)) and

n _mon (o(t_)_mo (t) - . Continuing the development gives

T T
n n

BC f an(t) n_mo (t)dt <__BCD f O n(t) _mn(t)
O O

T
n

< BCD [
-- A J

O

on(t) _n(t)dt .

The negative bound on I(T) Is then

(l.39)

I(T) > - BC---D-DI(0)
-- A

(1._o)
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For the positive bound the same procedure as in theorem I _s used

to give

T T T
n n n

f °n(t-T)¢n(t) dt 5_ f o _(t-T) ¢_(t)dt + f o_n(t-T)¢n(t)dt
o o

0

T T
n n

5_ B f o+(t-T) ,m+n(t)dt + B f °n(t-T)- Cm-n(t)dt
o 0

T T
n n

B
5_ B f on(t) Cmn(t)dt <___ f on(t) ¢n(t)dt . (1.41)

O O

Using these two bounds in (1.36_ and (1.37) gives

!
!

I
!
i
I
I
!
t

T
n

/
0

((x(t) + y(t)) * on(t)) _n(t)dt >

BCD if+" ,+ %+]- _ (x'+(l) + y (_)) dl + [ ai+ + [ I(0)

B
+i-[_

m

(x'-(X)+y'- (X))d%+ Z ai + Z c i ] I(0) , (1.42)

Using (1.42) and (1.34) gives (1.35). The remainder of the proof is

similar to that of theorem i with the left hand side of (1.14) replaced

by
T
n

f
O

T
n

((6(t) + x(t) + y(t)) t on(t)) cn(t)dt + e f on(t) ¢n(t)dt

O

T
n

+ E f (on(t) - cn(t)/k) ,n(t)dt . (1.43)
0

Q.E.D.

!
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The frequency domain condition (1.33) is certainly not as

easy to apply as (i.i)_ (1.33) was obtained because of the necessity

of using (1.35) in order to apply the various conditions on _(o).

An example of the application of this theorem is considered next.

Example 3. Let _(o) be an odd function defined for positive

values of o by

_(o) - o , 0 <__o <__1.25

= -a+ 2.5 , 1.25 < o < 1.5

= (5o/3)/(1+o) , 1.50 <__o

and let G(s) = K(s + 4)(s + 50)2/(s + .l)(s + l)(s + 1000) 2, with K

being large but finite. It is assumed that the kinks in the _(o)

curve are smoothed out so that the derivative is a continuous

function of o. A plot of this nonlinear characteristic reveals

that a convenient choice is to take _m(O) as an odd function equal

to _(a) for positive values of o except for 1.25 <_ o <__3.01 for

which interval _m(C) = 1.25. Sm(a) is then a continuous odd

monotone increasing function of c. With this choice A = .8, B - C = D = i

and (1.34) becomes f (Ix(t) l + ly(t) l)dt < .8. Since K is to be

large but finite, let E = 0 to give Re Z(J,.0 G(Jm) >__0 as the

criterion to be satisfied. G(J_) has an angle that lies outside

the ± 90 ° band in a lagging direction at low frequencies, at hi_her

frequencies the angle approaches + 90 ° and then - 90 ° at very high

frequencies. Because of this behavior, the Popov criterion will not

show stability. Let Z(s) - (s + l)(s + 1000)/(s + 4). This
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particular function has the proper phase characteristic, that is,

leading at low frequencies, almost zero at intermediate frequencies,

and then leading at high frequencies to give a product with an angle

in the e 90 ° band. Since Z(s) G(s) = K (s + 50)2/(s + .l)(s + i000),

it is seen that Re Z(J_) G(J_) > 0 for all _. Expressing Z(s) in

a partial fraction expansion form gives Z(s) = s + 997 - 2988/(s + 4).

The left hand side of [I,34)is .937, and hence this condition is

satisfied. Therefore, the given system is asymptotically stable in

the large.

G. Conclusion

This chapter has presented two theorems which allow the

Z(s) multiplier to correspond to a function of time that is non-zero

for t < 0 as well as for t • O. This innovation solves the problem

of obtaining a Z(J_) whose angle varies with equal freedom

between 0° - +90 ° and 0° - -90 °. The generalized RL Z(s) multiplier

considered shows that a nonlinear system having a monotone non-

linearity with a slope in the sector (0,k 2) is stable provided that

the system is stable for linear gains in the sector (O,k2) and

provided that the angle changes slowly enough with frequency.

Although this work gives improved results, it is not clear how close

these results are to the actual absolute stability limit. Additional

study is needed to resolve this matter.



34

While the two Z(s) functions discussed appear to be quite

useful, if it is not possible to show stability with either of these

two, it is not clear how one should go about generating additional

Z(s) functions with more desirable characteristics, other than to

use trial and error. The reason for this is the need to consider

simultaneously both the time and the frequency domain behavior of a

possible candidate for a Z(s) function. Tbls appears to be a

worthwhile area for further research.

Condition c of theorem I.i is one way of guaranteeing the

boundednessof _(t) and _(t). If a certain nonlinearity does not

satisfy this condition, the theorem may still be applied provided that

a Liapunov function can be found that will show the boundedness

of the state variables of the system. However, finding a

suitable Liapunov function may be a difficult task.
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II. Appendix I

Lemma. If fa(t) and fb(t) are two continuous time functions which

are zero outside the time interval (0, Tn) , fb(t) = h(fa(t)) where

h is a piecewlse continuous monotone increasing function of f , and
a

if either fa(t) and fb(t) are both always non-negative or non-

positive or h is an odd monotone function with h(0) = O, then

T
n

/ (fa(t) fb(t) - Ifa(t) fb(t + T) I)dt > 0
o

for any real value of T.

Proof. Given a value of T > O, let the summation

n

i=l
Ifa(6i) fb(_i + T) I 6 (AI)

be formed where 6 is a positive number chosen such that T/6 is an

integer and n is chosen such that n6 = Tn - 61 where 61 is a

positive number less than 6. Let a ranking of the magnitudes of

the values of f (t) and fb(t) that can appear in the summation bea

set up such that Ifall _> Ifa21 _> Ifa31... for fa and a similar ordering

Ifbl I _ Ifb21 [ Ifb31... holds for fb" Since h is monotone increasing

and either an odd function or fa(t) and fb(t) are both always non-

positive or non-negative, values of Ifai I and Ifbj I with the same

numerical subscript occur at the same time or the ranking can be

arranged such that they occur at the same time if two or more magnitudes

are equal. Using the ranked magnitudesp a table of product values
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that may appear in the sttmmation is formed as indicated below•

Ifbll Ifb21 Ifb31''" Ifbjl''" Ifbnl

Ifall falfbl Ifalfb21

Ifa2 Ifa2fbl I fa2fb2

Ifa3

lfai

Ifanl fanfbn

The dia_onal elements in this table correspond to the terms that

appear in (AI) with T = 0. For any value of T, the terms Ifai I

and Ifb_ I can appear only once, if at all, in the suramation. This

means that of the product elements appearing in (AI), only one

element can occur in a given row and one element in a given column

in the table of product values. Also, for T _ 0, the summation

terms appear as off diagonal elements in the table. Next, by

usin_ a row and column counting process it will be shown that
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n n
X f (61)fb( i)a

i=l i=l
Ifa(6i) fb (6i + T) I (A2)

for T @ 0.

Consider the elements on the right hand side of (A2) that

appear in the first row or first column of the table of product

values. The maximum possible number is two. If it is zero or

one, an inequality falfbl _ O, falfbl _ Ifa]fbj I or falfhl _ Ifaif_l I

is formed. The first row and the first column are then removed,

giving a reduced table of product values. If there are two elements,

it it necessary to consider three cases.

a. The two terms are Ifajf511 and Ifalfbjl. In this case the

two diagonal terms falfbl and faJfbj are used to give the

inequality falfbl + fajfbj _ Ifajfbl I + Ifalfbjl. Since the only

two elements possible in the first and Jth rows and columns have

been bounded by the diagonal terms associated with these rows

and columns, the _rst and Jth rows and columns are removed,

giving a reduced table of product values.

b. The two terms are Ifaifbl I and Ifalfbjl with i < J. An

inequality that may be written is falfbl + faifbi _ Ifaifbl I + Ifalfbi I.

If there is no term in the ith column, Ifalfbi I is used to bound

Ifalfhjl, since Ifalfbl I _ Ifalfbjl, giving as the deslred inequality

+ faifbi _ Ifaifbl I + IfalfbJl. The first and ith rows andfalfbl

columns are then removed to give a reduced table of product values.

If there is a term in the ith column, say Ifakfbil, the Ifakfbi I

and Ifalfbjl terms are bounded by the Ifalfbi I term and the IfakfbJl
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term, giving the inequality Ifalfhi I + Ifakfh_l > Ifalfhj! + !fakfhil.

Combining this bound with the one involving Ifaifbl I gives

falfbl + faifhi + IfakfbJl _ Ifaifbl I + IfalfbJl + Ifakfbi I as the

overall inequality resulting from this step. The Ifakfbjl term has

been borrowed to obtain the bound. This term is not an element of

the summation since the kth row and Jth columns by hypothesis each

have one element. A reduced table of product values is obtained

by deleting the first and ith rows and columns and add_mg the Ifakfbj I

term as one to be bounded by the remaining diagonal elements. The

array obtained has the same properties as the original array with regard

to each row and column having only one element. Therefore, the

process may be repeated on the reduced product value table.

e. Thetwote=s are Ifalfblland Ifalfb_lwithi > J. The

strategy of b is repeated with the roles of the ith and Jth

column being taken by the Jtb and ith rows, respectively. The

process is then applied to the first row and column of the reduced

table of product values and repeated until there are no terms

left in the final reduced table. Adding together the ineaualities

obtained at each stage of the process gives the left hand side

Qf (A2) plus additional terms greater than the right hand side

of (A2) plus the same additional terms. Upon cancelling the common

terms, (A2) results. From (A2) it follows that

n

6 [ (fa(61) fh(_i) - If (_i) fh(_i + T l l)> O.
i=l a --
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Since

T
n

f
0

(fa(t)fb(t) - Ifa(t)fb(t + T_)dt -

iml
[ (fa (8i) fb(8:I.)- Ifa(Si)fb(Si + T)I)8 + F,

where F is a real number that can be made arbitrarily small by

a suitable choice of 8, taking the limit as _ + o gives the

assertion of the lemma for positive T. A similar discussion

shows that the lemma also holds for negative T. Q.E.D.
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IV CHAPTER II. BOUNDS ON THE RESPONSE OF AN AUTONOMOUS

SYSTEM WITH A SINGLE NONLINEARITY

A. Introduction

This chapter is concerned with the calculation of bounds

on the response of the single nonlinearity system of Figure i.

For the first theorems it is assumed that the external input

to the system is zero and that the system is excited by initial

conditions only. Then, Fourier transformable inputs of a certain

class are permitted in later theorems. If the input is itself

bounded, the bounds which are calculated on the response enable

the showing of Liapunov stability but not asymptotic stability.

The bound that is determined is on the function ¢(o(t)) and usually

takes one of the forms shown in figure 6. Once a bound has been

obtained on _(o(t)), a bound can be calculated for _(t) for

specific nonlinear characteristics.

Pertinent references include the survey paper by Kalman and

Bertram [14] in which it ispointed out that an exponential bound

can be obtained on the response by the use of Liapunov functions.

The maximum value of _/v = -n is calculated over the space in which

the response is confined. The bound is then v(t) ! v(O) e-_t. The

bound on v(t) can then be converted into a bound on the system variables.

Sandberg [15] considered the problem of a time varying nonlinearity

confined to a linear sector and gave a frequency domain condition
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guaranteein_ that the state variables approach zero exponentially

with time. In the single stationary nonlinearity case with a

zero lower bound on the nonlinearity, this frequency domain

condition is equivalent to Re G(Jm) > O, which is a rather restricted

criterion. Tsypkin [16] obtained an analogous result using a Popov

type approach for a sampled data system havin_ a single nonlinearity.

Using a Liapunov approach, Yakubovich [17] showed that for a nonlinearity

confined to a sector (0, k), if Re G(J_ - a)(l + eJ_) + I/k > O, then

the response of the system satisfies lo(t) I !Me-atl_(0) l where M

is a positive number. This last result is similar to the Popov

criterion except for the shift in the argument of G(J_).

Although the criteria of the last 3 references show the

existence of a bound of the desired type, these references do not

consider the prbblem of calculating a value of M. Also, the

corresponding frequency domain stability criteria for these works

armmore restricted than those given in chapter I. Therefore, the

main object of this paper is to develop theorems giving bounds on

the response of systems using the approach employed in the development

of the stability criteria of chapter i. Once a system has been shown

to be asymptotically stable in the large using these criteria, it

will then be possible to calculate a bound on the response using the

results of this chapter.
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The first three theorems deal with those systems in which It

Is possible to show stability with x(t) = 0. Theorems 2.4 and 2.5

Rive boundln_ expreialoms for those cases in which x(t) _ 0. Since

for this case a bound must be available on the response of the

system of the form _(t) ! MI_(t) Ima x, where M is a positive number

and l$(t) Imax is the largest value of _(t) in (0, Tn ') the application

of these latter two theorems requires somewhat more computation than

the flrSt 3. The bounds for these first five theorems are calculated

usln_ a "completinF the square" approach of Aizerman and Gantmacher [13].

Under certain circumstances an improved bound can be found using the approach of

Lefschetz [ii]. This is used in theorem 2.6 and 2.7. Theorem 2.8

gives a bound on the response with an external input applied and

theorem 2.9 considers a special case which arises when dealing with

systems havin_ laR compensators. Finally, the possibility of obtainin_

an improved bound when the system is in the linear region is

discussed.

B. The Theorems

Theorem 2.1. For the system of figure i excited by initial conditions

only let the following hold:

a. 0 ! d_(o)/do ! k2 where k2 Is a positive number, _(o) and

(o - _(o)/k 2) = 0 only for o = _(o) = 0, and d_(o)/do be

a continuous function of o.
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b. G(s) - N(s)/D(s) with the degree of N(s) at least

one less than the degree of D(s) and with the zeros

of D(s) having negative real parts whose magnitude is

greater than or equal to the positive number _.

e. Re H(J_) - Re[e(l + Y(J_))(G(J_ - a) + i/k 2) + dJ_ G(J_ - a)

+ adG(Jm - a)] > b > 0

where h, c, and d are positive numbers, y(t) is composed

of delayed impulses and a piecewise continuous function

that satisfies y(t) ! 0 for t > O, y(t) - 0 for t < 0 and

f
o

ly(t)l eatdt < i . (2.1)

°(Tn) -2aT f=m2(t)dt o(0)
n o

f $(oldo ! e t + f ¢(oldo ]
4d o

(2.2)

where m(t) = F-I [P(Jm) Q(Jm)] with

p(t) " eat[(c + 2ad) otn(t) + d tin(t)] + c(oin(t ) e at * y(t)) n

and Q(Jm) is defined by 1/Re H(Jm) - Q(Jm) Q(-Jm). oin(t) is equal

to the initial condition component of o(t)_ oi(t), in (0, Tn) and

zero outside this interval. Similarly, oin(t) le equal to the
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initial condition component of oi(t) in (0, T n) and zero elsewhere.

(oin(t) * y(t)) n is equal to oin(t) convolved with y(t) in (0, Tn)

and zero elsewhere.

Proof. First it is desired to establish the non-ne_atlveness of

certain integrals which play a p_mminent role in the development.

Using integration by parts with o(t) $(t) being integrated gives

T

n 2atI e
0

2aT n
o(t) _(t)dt = e _(Tn) - _(0)

T

n 2at
- 2a ] e _(t)dt .

O

(2.3)

Also,

T T

n 2at n 2at
2a f e o(t)_(t)dt - 2a f • _(t)dt _ 0 (2.4)

O o

o(t)

since o(t)_(t) and _'(t) are both non-ne_atlve and _(t) = f _(o)do ! o(t)_(t)

O

because of the monotone increasin_ property of _(o). Adding the first

integral of (2.4) to both sides of (2.3) and rearranging gives

T T
2aT n n

n 2at 2a%
e _(Tn) + 2a f e o(t)_(t)dt - 2a / e (t)dt

O O

T T

n 2at
n 2at o(t)_(t)dt + 2a _ e= ]" e

0 0

o(t)_(t)dt + _(0) (2.5)

where the sum of the second and third terms on the left hand side of

(2.5) are non-negative by (2.4).

The second relationship to be established is
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T
n 2at

/ e
o

T
n

f
0

(on(t) - _n(t)/k2) _n(t) dt +

at _n _ne (y(t) * ((on(t) - (t)/k2)eat)) (t)dt > O.

v

Let the impulsive component of y(t) be given by [ cj 8(t - dj)
J=l

where the cj'B are negative numbers and the dj's positive numbers.

Substituting this component into the second integral on the left of

-adj +ad
(2.6) and insertln_ an e inside the inte_,ral and e .I outside

gives

(2.6)

T

ad n e2a(t-dj)
I _ cj e j f (on(t- dj) - _n(t-dj

J=l o

)/k2)_n(t)dt.

(2.7)

With the piecewise continuous component of y(t), y'(t), substituted

into the same integral, the result is

T

n at _ 5n ca(f e _n(t) f y_X)(on(t-X) (t-X)/k 2) t-X)dX at .

O O

(2.s)

-aX
Interchangin_ the order of integration and inserting an e

+aX
the integration with respect to t and e outside gives

inside

T

aX n 2a(t-X)
f y'(X) e f e (on(t-X) - _n(t-X)/k2) _n(t)dt d_

0 O

(2.9)

Appearing in both (2.7) and (2.9) is an integral of the form

T

n 2a(t-X)
f e (on(t-h) - _n(t-X)/k2) _n(t)dt where X > 0. This

O

integral may be rewritten as
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T
n

f
O

T
n

f
O

2a(t-X)
e

2a(t-;k)
e

(o:(t -;k) - _:(t " ;k)/k 2) _:(t)dt +

(on_(t - X) - _n_(t - X)/k2)¢_n(t)dt +

T
n

f
O

e2a(t-;k) (o_n(t - ;k) - _n(t - X)/k2)_:(e)dt +

T
n

f e 2a(t-X) (O:(t- X) - ¢_(t- ;_)/k2)_n_(t)dt • (2.10)
O

The plus subscript indicates that the function possessing it is equal

to the non-subscripted function when the non-subscrlpted function is

positive and zero otherwise. An analogous definition applies to the

use of the negative subscript. For example, cn(t) = Cn(t) for Cn(t) < 0

and _n(t) = 0 for sn(t) • 0. (2.10) is certainly less than or equal

to the first two integrals of this equation. Applying lemma 2 Eiven

in the appendix of this chapter to these two integrals gives that

(2.10) is less than or equal to

T
n

f
O

T
n

f
O

e2at(c+(t)- ,;(t)/k 2) _+(t)dt +

e2at(on_(t) - Sn_(t)/k2) _n_(t)dt -

T
n

f
O

e2at(on(t) _ _n(t)/k2)_n(t)dt.

(2.11)
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Using the positive bound (2.11) in (2.7) and (2.8) gives as

a lower bound for the sum of these integrals

T

v adj _ at n

( _ cj e + f e y'(t)dtl fe2a_on(t)-_n(t)/k2)_n(t)dt •
J=l o o

(2.12)

Using (2.1) and (2.12) in (2.6) shows that (2.6) holds.

At this point the necessary time domain relationships have

been ?brained. The next step is to make use of Parseval's Theorem ,

in converting the time domain integrals into corresponding integrals

in the frequency domain.

Let c_(t) and o_(t) be those components of o(t) and _(t),

respectively, due to the feedback signal -_(t). Then

T T
n

n 2at n _n2at
_n(t)_n(t)dt + 2da _ e o (t) (t)dtd f e

0 0

T

+c f
0

T
n

d f
0

n

eat((_(t) + y(t)) * [(an(t) - _n(t)/k2)eat]) _n(t)dt =

T

e2at o n(t)_n(t)dt + 2da f n e2at o_n(t)_n(t)dt
O

+ C

+d

÷ c

T
n

f
O

T
n

f
O

T

at _n _ne ((6(t) + y(t)) * [(o_n(t) - (t)/k2)e at] (t)dt

T

n 2at _bn
e2at oin(t)_n(t)dt + 2da _ e oin(t) (t)dt

O

neat ((6(t) + y(t)) * loin(t) eat]) _n(t)dt •

O

(2.13)
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In the first three integrals on the right hand side of (2.13) let

n (t) and o_ (t) by whereo_ (t) be replaced by o_ n* n • n*..

(t) = F-l[-c(Jm) F(o_n(t))]

and

• n* F-I
o_ (t) = [-J_G(J_) F(o_n(t))] .

In the first two integrals since the starred and unstarred quantities

are equal in (0, Tn) and since _n(t) is zero outside (0, Tn), this

change can be made without altering the values of these integrals.

For the third integral the identical reasoning plus _(t) + _(t)

being zero for t < 0 shows that the substitution can be made in

this case also without changing the value of the integral. A

second desired m_dlflcation is to replace the O, T limits on all
n

6 of the integrals on the right hand side of (2.13) by -=, _; once

again this is Justified by the nature of _n(t). This reasoning also

allows the last substitution which is to be made in the third integral,

namely the replacement of ((_(t) + y(t)) * [aln(t)eat]) by

ea_ n.((o(t) + y(t)) * [oln(t) The second function is equal to the

first in (0, Tn) and zero elsewhere. With these changes (2.13)

becomes
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2at 2at
d f e &,n*(t)¢n(t)dt + 2da f e a,n*(tl,n(t)dt

4_

+ c f eat((6(t) + y(t)) * [(o¢ n*
--GO

(t) - cn(t)/k2)eat])_n(t)dt

2at cn 2at _n
+ d f e oln(t) (t)dt + 2da f e oln(t) (t)dt

4-_ n
at n

+ C f e ((_(t) + y(t)) * [oI (t)eat]) _n(t)dt . (2.14)

Applying the Parseval Theorem to (2.14) and using the fact that only

the real parts of the first three Integra_ds g_ve a non-zero contrlb_tlon

to the values of these integrals gives

1
- f Re [d(J_ - a) C(Jm - a) + 2da G(Jto - a)

+ c [1 + Y(J_)](G(J_ - a) + l/k2)] ]F(_n(t)eat)12

4_
1

f t at nF[de at o (t)+ 2da e ai (t) +

d_0

+ c((_(t)+ y(t)) * [oin(t)eat]) n] F(¢n(t)e at) dm .

Usin_ c, the first integral can be wmwritten as

(2.15)

+co
1

-2-; /'

and the second as

Re H(Jto) IF(¢n(t)e at) 12 dto

+_

1_ f
2_

F(p(t)) F(¢n(t) eat ) dm (2.17)
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where the p(t) is defined in the statement of the theorem. Using

the approach given in Aizerman and Gantmacher [13] an upper bound

that can be obtained for (2.15) with (2.16) and (2.17) substituted

into it is

+= [F(p(t)) 12
L f
8_ -_ ReH (J_)

d_ . (2.18)

From the definition of P(J_), Q(J_), and m(t) given in the statement

of the theorem, an application of Parseval's theorem gives for

(2.1s)

I m 2f (t)dt.

Using (2.5) on the left hand side of (2.13) together with the

bound on the right hand side of (2.13) given by (2.19) results

in

(2.19)

T T

2aT n 2at n 2at

de n ¢(T n) + 2ad f e o(t)¢(t)dt - 2ad f e
O O

T
n

+of
o

_(t)dt

eat((8(t) + y(t)) * [(on(t) - _n(t)/k2)eat]k_n(t)dt !

(1/4) f
0

m2(t)dt + d_(0).

Since the sum of the second and third integrals is non-negative,

the desired bound

-maT f m2(t)dt

¢(T n) < • n [o-- 4d
+ ¢(o)]

(2.20)

(2.21)

follows . Q.E.D.
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Theorem 2.2. Let all of the oonditions of theorem 2.1 hold and in

addition let ¢(o) he an odd function. Then the assertion of theorem

2.1 holds with y(t) permitted to take on positive as well as

I negative values.

Proof. The only difference in the proof as compared with that of

I theorem 2.1 is that in place of (2.67 it is desired to show

T

I f n e2at(on(t) _ _n(t)/k2 )_n(t) dt-

o

T
n

I f eat(y(t) * ((on< t) -_n(t)/k2)eat))_n(t)dtl >- 0

O

(2.22)

To show this, lemma 2 for the odd function case is applied to _ive

T
n

O

e2a(t-l)(on(t - _) - _n(t - _)/k 2) _n(t) dtl _<

T
n

f
O

e2at(on(t) - _n(t)/k2) _n(t)dt.

Using (2.23) in (2.7) and (2.8) gives

(2.23)

I

I
I

T
n

If
O

at
e (y(t][ * ((on(t) - d_n(t)/k2 ) eat)_ d_n(t)dtl <

v

[
J=l

adj ®

I%1e + of

T

n 2at. n..
eat[y'(t) Idt] f e to [t) - d_n(t)/k2)d_n(t)dt •

0

(2.24)
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(2.24) shows that (2.22) holds. The remainder of the proof of

the theorem is unchanged. Q.E.D.

A Simpler Bound From the Computational Standpoint

It is possible to modify (2.2) in order to obtain a simpler

form for computational purposes. As the bound stands, p(t) is

_ m2(t)zero for t > T . This means that dt has to be calculated
n

for each value of T . Rather than using the transform of this
n

truncated p(t) in the development, it is possible to use the

Fourier transform of the untruncated function directly independent

of T . While the original approach should _ive an improved result
n

for small values of Tn, the latter approach definitely requires

less computational effort which is important in hand calculation.

Theorem 2.3. Let the conditions of either theorem 2.1 or theorem 2.2

hold.

by

Then the assertions of these theorems hold with _(t) replaced

p(t) - eat[(c + 2ad) oi(t) + d oi(t)] + c(oi(t)e at * y(t)).

(2.25)

Proof. Referring to (2.14) it is seen that the change in the

definition of p(t) does not af@ect the value of the last three

integrals on the right hand side of this equation. Also, since

the new p(t) is Fourier transformable due to G(s) having poles

to the left of s - -a and due to (2.1) holding, It'follows that the

remaining steps in the proof can be carried out without any alteration.

Q.E.D.
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I

Example i. Let C(s) = (s + l)(s + 5)' k2 = 50, and _(o) be a

monotone nonlinearity. It is assumed that this system is excited

by a unit impulse input. The Popov criterion shows that this system

is asymptotically stable in the large. Since the Popov criterion

is applicable, it is reasonable to attempt to satisfy the real

part criterion with Y(Jm) = 0. Since the pole of G(s) closest

to the origin is -i, a must be chosen less than i. Let a be chosen

arbitrarily as .5. The real part criterion c is then ,with c = i

Re [ (i + .5d + dim)] + .02 • 0 .
(j_+.5)(j_+4.s)

I_ d is chosen such that the zero of the term im brackets is located

between the two poles, the real part of the first term will be non-

negative and c is satisfied. Setting d = i gives

(s + 1.5) + .02
H(s) = (s + .5)(s + 4.5)

O(Jm) obtained by factoring the reciprocal of the real part of H(J_) is

7.07(s + .5)(s + 4.5)
2

s + 14.9s + 13.1

For a unit impulse input oi(t) = .25e _t - .25e -St and _i(t) = -.25e -t

5t ;i(t)) . f (t)dtThen p(t) = e" (2Ûi(t) + = .25e -'St + .75e -4"5t m 2
O

evaluated using Parseval's theorem and tables is 1.86. Substituting

this value into the bound expression gives @(t) ! "465e-t"

+ 1.25e -St .
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In order to determine the closeness of this bound for a

particular case, let _(o) -- 50_. This choice gives _(g) = 25s2.

-.5t
Using the previously established bound results inls(t)I <__.1365e

The actual response of the system with a unit impulse input is

-3t
•1475e sin 6.78t which has a maximum ma_,nitude of .081 at t = .17

seconds.

C. Some Considerations in Usln_ the Theorems

At first glance it might appear that the best bound would

be obtained by using the largest allowed value of a. However, as

the parameter a is increased, the value of the quantity multiplying

the exponential term in the bound expression will _enerally increase

since the m_nimum value of the real part of H(J_) will Ket smaller.

With bounds available for d_fferent a's, it is of course possible

to combine them to get an improved overall bound by taking the

smallest bound at a given time.

With re_ard to the allowed values for a, it has already been

stated in the theorem that a must be less than the magnitude of the real

part of the pole of G(J_) closest to the J axis. By considering the

linear case, it is also seen that a must lie to the right of that

portion of the root locus of the system corresponding to the gain

in the sector (0, k2).
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Oncea has been chosen, it is necessary to cbecl_ the real

part criterion to determine whether it is satisfied. Presumably,

the asymptotic stability of the system will have been demonstrated

so that a candidate for a Y(s) function is available as well as a

value of d/c. It is to be noted that the satisfaction of the real

part condition only depends upon d/c but that the value of the

bound obtained depends upon both these parameters. If the real

part condition is not satisfied for this choice for all m, the

parameters can be altered and a new value of Y(Jm) selected. The

required changes in the parameters and Y(J_) should be evident

from the first try.

It must always be made certain that f eat I y(t) Idt < I.

o

A point to note is that the larger the value of a, the more

difficult it is to satisfy the criterion since ad G(J_ - a) has a

larger coefficient and since the area associated with y(t) becomes

less, implying that the maximum phase angle that can be obtained

from i + Y(J_) is less than 90°i

Using a computer it is possible to obtain an optimum value

for the parameters c and d and for Y(J_) by selecting these

quantities to minimize the function of time or number multiplying

the exponential term in the bound expression. With hand calculation

techniques one would have to be satisfied with a few different

trials for these quantities.
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D. Case of x(t) _ 0

If in order to show stability a multiplier is required

which has z(t) - F-I(z(J_)) non-zero for t ! 0, the bounding

inequality becomes more complicated in that the value of

l_n(t) l max, the maximum value ofl_n(t) I in the interval (0, Tn) ,

must be used. This result is presented in the next theorem.

Theorem 2.4. For the system of fizure 1 excited by initial conditions

let a and b of theorem 2.1 hold and let

Re H(J_) - Re[c(l + X(J_) + Y(J_))(G(J_ - a) + i/k 2)

+ dJ_C(J_ - a) + ad C(J_ - a)] > b > 0 (2.26)

where b, c, and d are positive numbers, x(t) and y(t) are composed of

delayed impulses and a piecewise continuous function that satisfy

x(t) = 0 for t > 0, y(t) = 0 for t < 0, x(t) <__0 for t < 0, y(t) <_ 0

for t > 0. The magnitude of the piecewise continuous component of x(t)

is assumed to be less than £ exp (ft) where £ and f are positive

numbers and

+_ -altl Ix(t)+ (t) ldt < 1. (2.27)f e y

Then

-2aT f m2(t)dt

_(r n) < e n [ o-- 4d + _(0) + M(Tn) l_n(t)I2max ]

where re(t) = F-I [P(Jm) q(Jm)] *ith



58

at 2ad)oin ( in(t)p(t) = e [(c + t) + d _ ] +

c loin(t) eat * (x(t) + y(t))] n

and Q(J_) is defined by 1/Re H(J_) = Q(J_) Q(-J_).

T
n t t-X

at ea(t-X)M(Tn) = c f e f f
o -® t-X-T

n

_g(t) l!x(),)ldEdkdt.

where _(t) = F-I (G(J_)).

Proof: The proof is identical with the proof of theorem 2.1 until

(2.67 Isreached. In place of (2,67 It is to he shown that

T
n

f
O

e2at(on(t) - _n(t)/k2) _n(t)dt +

T
n

f
O

at _n (t)/k 2) e ae [x(t) * ((on(t) - , t)] sn(t)d t +

T
n

f
O

at _n(t )/k2)eat) ]e [y(t) *((on(t) - _n(t)dt > 0 . (2.287

u

Let x(t) = [ a i 6(t + hi) + x'(t) where x'(t) is the
i=l

piecewise contlnuous component of x(t). Substltutlng the impulsive

component of x(t) in the second integral above gives

T

u ab i n 2at

[ a i e [ e
i=l o

[on(t + b i) - _n(t + 5i)/k 2] _n(t)dt

(2.29)
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and substituting the piecewlse continuous component x'(t) into

this same integral gives wlth a change in the order of integration

T
O n

-RX
f x'(X) e f
--_ 0

T
n 2at

Writing out f e

O

2at
e [nn(t - X) - _n(t - X)/k2]_n(t)dt dX.

[onct-k) - _nct-X)/k 2] _n(t)dt as in

C2.10) gives that this integral is less than or equ&1 to

T

o

(2.30)

T
n

/
O

e2at(cn(t - X) - _n(t - X)/k 2) _n(t)dt • (2.31)

Applying lemma 2 for X < 0 then gives that

T

n 2atf e
O

T

n 2atf e
O

[on(t - X) - _n(t - X)/k 2] _n(t)dt i

[on(t) - cn(t)/k2] _n(t)dt . (2.32)

A lower bound on the second and third integrals of (2.28) is then

(2.32) times

+_
u abi v ad i

a i e + Z c i e + f
inl J=l --_

(x'(t) e -at + _'(t)+at)]dt

whlch shows that (2.28) holds.

I
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Next, let the term

C

T

f neat (x(t) * ((on(t) - }n(t)/k2)eat)) _n(t)dt
0

be added to (2.13) and let the substitution be made as before.

A modification is required In the replacement of o_n(t) by

o_n*(t) for d_e added integral on the right hand side of (2.13).

For this integral it is necessary to take into account the

difference between these two functions due to x(t)'s being

n*

for t < 0. Leto_ (t) = o_n(t)_ + o_d(t).non-zero Substituting

for o6n(t) according to this expression then gives the followin£

two integrals to be added to (2.14)

I
D_

at n(t ) _n eat _n
e (x(t) * [(o_ - (t)/k 2) ]) (t)dt

4_

-c f
d

eat(x(t) * (o 4 (t)eat)) _n(t)dt .

An added term involving the initial condition expressi@n is

(2.33)

+_

at oin(t)eatc f e [x(t) * ] _n(t)dt • (2.34)

m_

As in the proof of the corresponding stability theorem, the magnitude

of the integral involving c_d(t) can be bounded in terms of I_n(t) Imax.

Using the deflnition of Isn(t)Imax and taking absolute magnitudes

zives
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_-OO

f eat(x(t) * (O d(t) eat)) _n(t)dt <

T
t t-A

c l_n(t)12max of neat f ea(t-X) f
t-X-T

n

lg(_) IIx(_)ldcdXdt

= M(Tn) l_n(t)12max (2.35)

RepeatlnR the steps in (2.15) through (2.19) then gives for (2.20)

T T

2aT n 2at n 2at

de n _(Tn_+ 2ad f e o(t)_(t)dt - 2ad f e _(t)dt
O O

+ C

T
n

f
O

ate ((_(t)+ x(t) + y(t)) * [(on(t)- _n(t)/k2)eat]) _n(t)dt

I _m 2 + max "<__ _ f (t)dt d_(0) + M(T n) I_n(t) l2 (2.36)
O

Then (2.211 becomes

-2aT f m2(t)dt M(T n)

n o + _(0) + _I_n(t)]2max]. (2.37)_(T n) ! e [ 4d

Q.E.D.

Theorem 2.4 can be applied in the case where _(o) is an

odd monotone function with x(t) and y(t) being less restricted.

The proof is similar to that of theorem 2,1 so it will not be repeated

here.

Theorem 2.5. Let all of the conditions of theorem 2.4 hold and in

addition let _(o) be an odd function. Then the assertion of theorem 2.4

holds with x(t) and y(t) permitted to take on positive ns well as

negative values
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Although M(Tn) is independent of system excitation as

developed in the proof of the theorem, this is not the case for

I_n(t) Imax. A value must be obtained for this quantity before

the bound can be applied. The simplest way to find this

quantlt_ is by using theorems 2.4 or 2.5 with a = 0. Tn is

that value of time at which l_n(t) Imax occurs. Thenchosen as

by using the fact tbat _(T n) approaches infinity more rapidly

than l_(o) I2, a hound can be ohtained on l_I by findin_ the

value of this varlahle ahove which the bounding inequality does

not hold.

E. A Diffe_#nt Bound

The bound (2.2) given by theorem 2.1 as well as the

other bounds obtained thus far depend upon the square of the

initial condition excitation. As lon_ as _(a) is in its linear

range, a reasonable bound is obtained for a. To see this, let

2
_(a) = ClO where cI is a positive number. In the calculation

of the bound for a a square root must be taken and a is then

effectively bounded by a linear function o_ the initial conditions.

other hand if ¢(a) is in a saturation region,S(a) - c21_ I +On the c3 ,

resulting in the bound depending upon the square of the initial

conditions. To try to get a better estimate in this saturation

case, the approach employed by Lefschetz [ll] will be used rather than

the "completing the square" approach given in Alxerman and Gantmacber [13]

that has been utilized thus far. The Lefschetz approach yields a
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bound dependent upon the magnitude of the initial conditions.

Theorem 2.6 Let all of the conditions of either theorems 2.1 or

2.2 hold. Then another bound on $(Tn) is

-2aT max

_(T n) ! e n [ d + _(0)] (2.38)

cO

[ tp(t)]dt

o

where

2at
p(t) = e [(c + 2ad) gin(t) + d _in(t)] + c eat[gin(t)eat * (y(t))] n

(2.39)

Proof. The proof is unchanged until (2.15) is reached. At this

point, since (2.16) is negative, it can be dropped and the second

integral (2.17) retained. Then, the left hand side of (2.20) is less

than or equal to the magnitude of (2.17) written in time domain form

which is

at(c f e (6(t) + y(t)) * [gin(t)eat]) n sn(t)dt +

+_ +_

2at _.n(t ) sn 2atd / e i (t)dt + 2da f e Gin(t) sn(t)dt. (2.40)

The magnitude of this integral is less than or equal to

lsn(t) Imax f Ip(t) Idt • (2.41)

where p(t) is defined above. With the exception of the use of the

new bound, the remainder of the proof is unchanged. Q.E.D.
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In a similar way theorems 2.4 and 2.5 can be restated using

this new bound. The modification in the proof is identical to that

given for theorem 2.6.

Theorem 2.7. Let all of the conditions of either theorems 2.4 or

2.5 hold. Then another bound on #(Tn) is

-2aT l_n(t)]max / Ip(t)[dt M(T n)

_(r n) ! e n [ o + _ I_n(t) I2 + _(0)]
d d max

(2.42)

where

2at
p(t) = e [(c + 2ad) oin(t)+ d oin(t)] +

at [oinc e (t)e at * (x(t) + y(t))] n (2.43)

and M(Tn) is defined in the statement of theorem 2.4.

Example 2. Consider the same problem as that of example i and let

the nonlinear characteristic be a saturation function defined by

_(o) = 500 for 0 _ Iol _ .02K and _(o) = _ K for .02K _ Ioi <

with the + sign applying for positive values of o and the - sign

for negative values. Using (2.39) and the previously computed values

oi(t) and _i(t) gives p(t) = .25 + .75e -4t. The bound is thenof

-T -5T -T

_(T n) < K (.25T e n _ .1875e n + .1875e n) with l_n(t) Imax-- n m K.

The bounds for o are then

-T -5T -T

Ioi < .25 r e n _ .1875e n + .1875e n + .01K_Iol > 02K-- n -- "
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-T -5T -T
2 n n n_

c < .04K(.25T e - .1875e + .1875e j [a I < .02K .
n ) --

Plots of this bound (called the L bound) and of the bound computed in

example I (called the AG bound) are plotted in figures 7-10 for

various values of the saturation level K. The smaller the value

of K, the better the results of the L bound as compared with the

AG bound.

F. A Response Bound With an External Input Applied

at

The introduction of the e multiplier for _(Tn) allows a

bound to be obtained for the response of the system with certain

external inputs applied. Theoretically, it is only necessary

to make certain that the input is such that piecewlse continuity

and Fourier transformability are guaranteed for certain pertinent

functions. From the practical standpoint some difficulty may be

encountered in findin_ a bound for l_n(t) Imax in theorems 2.4, 2.5,

2.6, and 2.7. If f Ip(t)ldt is bounded for a = 0, a bound can be
w_

computed as discussed previously; if this integral is not bounded,

it is necessary to calculate a time varying bound for l_n(t) l2
max

usin_ the theorems with a 0 and choosing l_n(t) l2= as occurring
max

at t = T .as the worst case. Since l_n(t) l does not appear in
n max

theorems 2.1 and 2.2, these theorems can be applied with no change

in the computation procedure. Examples of possible inputs include

a sinusoidal function, a ramD function and an exponential function.

This discussion is summarized in the following theorem.
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Theorem 2.8. Let the conditions of either theorem 2.1, 2.2, 2.4,

2.5, 2.6, or 2.7 hold. If the input to the system is such that

n t) and o n(t) are Fourler transformable,°n(t)' °n(t)' _n(t)' Or ( ' r

the assertions of these theorems hold with ain(t) and $1n(t) replaced

by Gin(t) + orn(t ) and _in(t) + orn(t) respectively. Or n(t) and

n(t) are equal to those components of s(t) and o(t), respectively,
r

due to the direct action of the input (the input acting through G(s))

in (0, Tn) and zero outside this interval.

Example 3. Let G(s) = i/(s + i), k 2 = I0, the nonlinearity be monotone,

and the excitation be an input of sin t with the initial conditions

zero. This G(s) is sufficiently simple that theorem i can be

applied with y(t) = 0.

Re H(J_) = Be (c + ad + d]_l + i
j_-a+l " "

Set a = .25, c = I, and d = 2. This then glvos ReH(J_) = 2.1.

-t
Or(t) = .5e -t + .707 cos(t - 135°), _r(t) = -.5e - .707 sin(t - 135°),

and p(t) = 2e "25t sin t. Using these quantities then gives as the

bound

-.ST
n

_(Tn)._ _< .238 - .014 cos 2Tn - .0561 sin 2Tn - .2235e
< .2959.

For the special case _(o) = I0o, using the above bound gives o(T n) ! .243.

The actual response is o(t) - .0082e-I_+ .0905 cos(t - 95.2°).
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Example 4. Let the system be the same as in example 3 but let

the input be a unit ramp rather than a sinusoidal input a (t) = t-l+e -t
• J

r

_ (t) = 1 - e -t, p(t) = 2e'25tt, Using these values gives
r

2
_(Tn) < 1.91(.25 T -T-- n n

-.5T
n

+ 2) - 3.82e

from which it is seen that the bound approached for large T is
n

2
.4775 T . With _(_) = 10o, this gives as a bound for large T

n n

ioi< .309 T . The actual response for large values of T is
-- n n

= .0909 T .
n

For both of these examples by referring to [6] - [9] and

treating the inputs as being zero outside (0, Tn), it can be

shown that the conditions of the theorem are satisfied.

As was pointed out in the introduction, the application of

this theorem can show Liapunov stability with certain inputs

applied. The case of example 3 with the sinusoidal input applied

illustrates this point.

G. Modification For the Case of Poles to The

Left of the Line s = -a

In the case of a system in which a lag compensator has been

incorporated in order to increase the gain of the system at low

frequencies, the significant portions of the response are usually

characterized by one time constant while another time constant due

to the lag compensator characterizes the response for large values

of time. In the theorems discussed thus far, it has been assumed
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that a is less than the magnitude of the real part of the pole

closest to the origin. Therefore, tbese theorems would only

be able to yield a bound that would be realistic for large t.

I

I

i

i

I

I

The theorem below allows the calculation of a bound that should

give good results for the significant portions of the response

of these systems. The approach used is basically one in which the

given G(s) is replaced by another transfer function equal to g(t)

in (0, Tn) but different from g(t) outside this interval. This

modification allows the original theorems to be applied to give

a bound valid in the time interval (0, Tn).

Theorem 2.9. Let

n ai
C(s) = el(S) + [

i=l s + bi

I n cis G(s) = G2(s) + i-ll s + di

I

i

I

I
I

where a > b i but less than the magnitudes of the real parts of the

poles of Gl(S) and G2(s). Then if conditions a and b are satisfied

and the modified c given below is also satisfied

Re H(jm) = Re[c(l + Y(Jm) + X(Jm)) (GA(Jm - a) + i/k 2)

+ d GB(J_ - a) + 2ad GA(J_ - a)] [ 6 > 0

where X(J_) may be zero, and
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n

GA(Jm - a) = Gl(Jm- a) +
i=l

n

@B(Jm - a) = G2(Jm- a) + _
i=l

(a_bi)T n -juT• II

a i[l - e e ]

Jm - a+b i

(a-b i)T n -_mT n

ci[l - e e ]

jm- a+b i

the assertions of theorems 2.1, 2.2, and 2.6 hold without any

changes and the assertions of theorems 2.4, 2.5, and 2.7 hold

with the g(E) used in the definition of M(T n) replaced by

gA(_) = F-I [GA(J_ )].

Proof. The only change required in the proof of the theorems is in

the step just before the application of Parseval's theorem by which

the time domain integrals are converted to frequency domain integrals.

n* _ n* ( are o_n*(t) and t) redefined as (t) =-F-I[GA(Jm) F(_n(t))]O_

and o_"n*'t)_ =-F-I[GB(Jm) F(_n(t))]. If x(t) = 0, these changes

do not alter the values of the integrals in which they appear since

•these two time functions are equal to oft) and o(t), respectively,

in (0, Tn). For x(t) # 0, the substitutions result in a different

value for o_d(t) but the same steps in the proof are applicable with

g(e) being replaced by gA(E ) in the definition of M(Tn). The reason

for the changes is that with the original definitions, o_n*(t) and

,n*(t ) atwhen multiplied by e were not Fourier transformable. The

new definitions result in Fourier transformable functions when

multiplied by the exponential. The other steps in the proof are

unchanged.
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ExamEle 5. Let G(s) = -l.005/(s + 2) + i/(s + I) + .005l(s + .i)

for a system with a monotone nonlinearity and a gain k2 = i0. Then

s G(s) = 2.010/(s + 2) - i/(s + i) - .0005/(s + .I). Let a = .5 = T .
n

This GA(S) is sufficiently simple that theorem 2.1 can be applied

with Y(s) = 0, c = I, and d = i. The real part criterlon is then

Re [2 GA(JW - a) + GB(Jm - a) + .i] =

+.4Tn -J _Tn)i/(j_ + .5) + .0095(1 - e e /(J_ - .4) + .i.

The maximum magnitude of the second term on the right hand side

is .053. Therefore, Re H(Jm) > .047. For convenience in the

calculation of the lower bound, this number will be used rather

than the actual function of frequency, p(t) = e'5t[2ain(t) ÷ _in(t)]

_St 4te + .0095e +" for an impulse input. The bound is then

I _(T n) !5_32[i'19e n

-T -.2T -2T -I.IT

+ 000113 e n n n]• - e - .19 e

for T < .5. For T > .5, the bound given by the original theorems
n -- n --

can be used with a < .i.

He A Result for the Linear Case

If _(a) is a linear function or a nonlinear function in its

linear range, it is possible to get an improved result for the

frequency domain condition c. To see this, let _(o) = Ko where

0 < K < m. Then (2.4) can be replaced by



I
I
!
I
i
I
I
!

I
!
I
I
i
I
I
i
!

75

T T
n 2at n 2at

a f e o(t) _(t)dt - 2a f e $(t)dt >__0

O o

since o(t)_(t) - Ko2(t) and _(t) = Ko2(t)/2. Also, for the

linear case

T
n

f
o

eat ea(t -l) (on(t_l) - _n(t-l)/k2)_n(t)dt -

T

K(I - K/k 2) / neat on(t)e a(t-l)on (t-l)dt 5_

O

.5K(I - K/k 2) [

T T
n n

f e2aton2 (t) dt +

O o

2a(t - l)on2e (t - l)dt] <

T T
n n

K(I - K/k 2) f e2aton2(t)dt -- /
O o

e2at(on(t) _ _n(t)/k2) _n(t)dt

which means that the integral magnitude condition can be relaxed.

Combining these _wo results gives for the frequency domain

condition c

Re H(J_) "

where

Re[(t + dJ_ + Y(Ju) + X(j_))(G(J_ - a) + i/k2)] _ 6 > 0

+_

/ (Ix(t) l + ly(t)l)dt < i.
u_

Because of this improved condit@on, it is possible to choose

larger values of the parameter a for the linear case than for the

nonlinear case. This suggests the following approach. When lo(t) l

is such that the system is is i_s nonlinear region, one of the

bounds already discussed can be claculated. When according to
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this bound the system is in and remains in the linear region for

all succeeding values of t, say t _ T I, an improved bound is

calculated using the real part criterion given above. In

applying the theorem this second time, a value is immediately

available for _(TI). However, since oi(t) and _i(t) are not

known for this second application of the theorem, bounds for

these two quantities must be calculated using the bound on

_(o) determined in the first application of the theorem.

I. Conclusion

This chapter has presented a number of different results for

bounds on the response of the single nonlinearity time invarlant

system. The usefulness of these bounds appears to be in two

applications. First, it is possible to develop an approach for

carrying out an analytical design for a nonlinear system. If the

system is excited by initial conditions or by an impulse or step

input which can be converted to equivalent initial condition

inputs, the theorems given can be used to calculate a bound on

Io(t) l. Since the desired equilibrium state for the excitation

under discussion is the origin, it is possible to obtain a satisfactory

design for the response time of the system by adjusting the parameters

of the system or by adding a compensator such that the bound on

the system output meets the system specifications. Secondly, if a

bounded time varying input is applied to the system, it is possible

to show Liapunov stability by applying the bounding theorems.
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Therefore, the bounding theorems give sufflclent conditions for

Liapunov stability with a bounded input applied, provided that

no common factors of G(s) in the right half s plane or on the

j_ axis have been cancelled.
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J. A_pendlx

Lemma i. Let fa(t) and fh(t) be two continuous functions of t

that are zero outside the interval (0, nat) where n is a positive

integer and At is a positive number, fa(t) fb(t_• _> O, fa(t) = h(fb(t))

where h is a piecewise continuous monotone increasing function of

its argument, then if either both fa(t) and fb(t) are always non-

positive, or non-negative or if h is an odd function with h(O) = O,

n

I
k=o

n

Ifa(kkt) fb(kAt- X)I --< I
k=o

fa(kAt) fb(kAt)

where X is a real number such that IXl/At is an integer.

Proof. The proof of this lemma follows from the proof of the

lemma given at the end of chapter i in which this result is

obtained as an intermediate step.
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Lemma 2. Let f (t) and fb(t)__ be two continuous functions of timea

that are zero outside the interval (0, Tn)_ where Tn is a positive

number, fa(t) fb(t) >__0, fa(t) = h(fb(t)) where h is a piecewise

continuous monotone increasing function of its argument, then if

either both fa(t) and fb(t) are always non-positlve or non-negative

or if h is an odd function with h(0) = 0,

T T

n 2a(t-_) n 2at
I f e fa(t)fb(t-X)dtl ! f e fa(t)fb(t)dt, _ > 0

O O

and

r
n 2at n 2at

I f e f (t)fb(t-_)dt I < f e f (t)fb(t)dt _ < 0.a -- a '
o o

Proof. Let At be chosen such that [_I/At is a positive integer and n

is the largest integer less than or equal to T /At. It is assumed that
n

[_,[ < Tn for if i_,l > Tn, the assertion of the lemma follows at once.

With X >0, let the two summations

n

k=o
[fa (kAt) fb {kAt - X)I e2a(kAt - X) At (AI)

and

n

I
k=o

be formed.

f (kAt) fh(kAt)e 2a(kAtl At (A2)a

(AI) divided by At may be rewritten as
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[Ifa(X) fb (0) I + Ifa(_+At) fb(At)I+ If (X+ 2At) fb(2At) l +
a e le

+ Ifa(Tn-At ) fb(Tn- %-At) I + Ifa(T n) fb(Tn-%)l]

+ (e2aAt - i) [Ifa(%+At) fb(At) I + Ira(X+ 2At) fb(2At)I + ...

Ifa((n-l)At) fb ((n-l)6t -l)I + Ifa(nAt) fb(nAt-A)I]

+ (e4aAt 2aAt)
- e [Ifa (%+ 2&t) fb(2At) I + If

a(%+3At) fb(3At) l + ...

Ifa((n-l)At) fb((n-l)At-A)l + Ifa(nAt ) fb(nAt-A)I]

"0" eoo

+ (e2a(l-At) 2a(A-2At)- e

) [Ifa((n-l)At) fb<(n-l)At__) I +

Ira(nat) fb(nAt-_)l]

+ (e2a_ 2a(%-At)
- e ) Ifa(nAt) fb(nAt_X)I. (A3)

Similarly, (A2) divided by At may be rewritten as

[fa (0) fb (0) + fa (At) fb(At) + f (2At) fb(2At) +
a . o,

+ fa((n-l)At) fb((n-l)at ) + fa(nAt) fb(nAt)]

+ (e2aAt - l)[fa(At) fb(At ) + fa(2At) fb(2At) + ... + f
a (nat) fb (nat)
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4aAt
+ (e 2aAt) ...- e [fa(2At) fb(2At) + fa(3At) fb(3At) + fa(nAt) fb(nAt)]

"_ • eo

_ 2a(_-At)
+ (e2ak e )[fa(_)fb(k) + fa(%+At)fb(k+At) + •.. fa(nAt) fb(nAt)]

oem

2anAt 2a(n-l)At)+ (e - e [fa(ngt) fb(ngt)] • (A4)

Comparing the terms in (A3) and (A4) having Che same exponential multiplier

and using lemma i on the terms of (A3), it follows that (A3) is less than

or equal to (A4). Since

T

n 2aCt-l) n

I [ f (t) fb(t-X) e dt- _m
o k=o

f (kAt) fh(kAt-k)gtla

where e(At) is a positive number whose value depends uoon At, taklng the

limit as At ÷ 0 gives

T T

n e2a(t_l)dt n 2at
1 f f (t) fb(t-X) I <-- f fa(t) fb(t) e dr.

a
o o

which is one half of the lemma.

With _ < 0 the summation

n

k-o
Ifa(kAt) fb(k_t-k)le2akAt At (AS)
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is formed and rewritten as

[Ifa(0) fb(-l)l + Ifa(At) fb(At-l) l + Ifa(2At) fb(2_t-_)l + ...

Ifa(nAt+%) fb (nAt) l]

2aAt
+ (e - l)[Ifa(_t) fb (At-x)I + Ifa(2_t) fb(2At-X) l + ...

Ifa(na_+%) fb(nAt) I]

+ (e4aAt 2aat)- e [Ifa(2At) fb(2At-%)I + Ifa(3_t) fb(3&t-l) l + ...

1_a(nat+l) fb(nAt) I]

+ (e2a(nAt+l) 2a((n-l)At+%)
- e ) [Ifa(nAt+%)fb(nAt)l] (A6)

Repeating the foregoing reasoning with (A6) replacing (A3) gives

T T

n 2at n 2at
[ / e fa (t) fb(t-lldtl i / e

O O

fa(t) fb(t)dt •

Q.E.D.
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A. Time Varyin$ Nonlinearity

The theorem given below is a modification of theorem 1.2 with

T

the modification added to take into account the f n _(t)_(t)dt term

o

no lon_er being an exact inteKral. There are a number of ways in

which this could be done; the approach used has the merit that it is

not necessary to take into account the rate at which the nonlinearity

changes with time. Therefore, this theorem appears to be the most

generally applicable one that could be developed.

Pertinent references include the works By Sandberg [18] and

Rekasius and Rowland [19]. The criteria which are developed in these

references do not include anything as general as the Z(s) multiplier

used in theorem 3.1.

Theorem 3.1. For the system of figure 1 with _ being a time varying

nonlinearity let the following conditions hold:

a.

be

A _m(O)o ! _(o,t)o ! B _m(O)o where A and B are real numbers

2
satisfying 0 < A ! i and I ! B < =, _(O,t) = _m(0) = O, o _(o,t) < k o

where k > 0 and o _m(O) > 0 for o # O, d_(o,t)/do is a continuous

function of o, _m(O) is a continuous monotone increasing function

of o having an odd part _mo(O) that satlsfies l_m(O) I ! Cl_mo(°)l

and I_mo(O)l ! Dl_m(°)I"

Conditions b and c of theorem I.i.

Then a sufficient condition for asymptotic stability in the large

is that

B-A
Re[Z(j_o) G(J_) + E(G(J_) + I/k) - a(_A'" ) (k2 + _o2) IG(J_)I 2 ] z 6 > 0 (3.1)
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for all real _ where E is a non-negative number,_ is a

positive number, and

Z(Jm) " 1 + ajm + X(Jm) + Y(jm) (3.2)

and

BCD 4_0
[ f (x'+(t) + y'+(t))dt + _ ai+ + _ Cl+] -

+_
B m

(x'-(t) + y'-(t))dt + _ a i + [ ci ] < I (3.3)

where x'+(t), y'+(t), ai+ and ci+, are the positive portions or

values of the corresponding non-superscrlpted functions or numbers

and x'-(t), y'-(t), ai , and ci are the negative portions or

values of the correspondin_ non-superscripted functions or

numbers. The magnitude of the piecewise continuous component

of x(t) is assumed to be less than £ exp(ft) where £ and f

are positive numbers.

Proof. The proof is identical with the proof of theorem 1.2 except
Tn

for the handlin_ of the f o(t) _(t)dt term. Because of

O

condition a of the theorem, it is possible to express _(o,t) as

_(o,t) = A_m(O) + _2(o,t) (3.4)

where

1,2(o,t)i _< (B-A) ]era(o) I _< B-__AAl*(o,t)l (3.5)
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Usin_ this result, it is desired to show that

T T

[ n. B-A n k2 a2
o(t)_2(a,t)dt + _ f [a2(t) + (t)]dt >__0, (3.6)

o O

Since

B-A iS(t) k o(t)[l@(t) @2(s,t) l < -_

< .5(B-A) [_2(t ) + k2 o2(t)]
-- A

(3.7)

(3.6) holds.

T T
n n

/ ((6(t) + x(t) + y(t)) * an(t)) _n(t)dt + _A / an(t) _mn(t)dt
O O

(1.43) in the proof of theorem 1.2 is replaced by

T
n

/
O

T
n

(t)_2(a,t)dt + .5_ (B-A)A f ([an(t)]2 + [k2 an(t)]2)dt
o

T
I%

+ E f (an(t) - _n(t)/k) _n(t)dt =

O

T T
1% 1%

f ((6(t) + x(t) + y(t)) * a_n(t)) _n(t)dt + _ f a n(t ) _n(t)d t
O O

T
n

[o_n(t) ]2dr

T
n

+ 5= (B-A) _ [a n _ k 2" A (t)]2dt + .5 /

O o

T
n

+ E / (acn(t) - _n(t)/k) _n(t)dt +

T o
n T

n

f ((6(t) + x(t) + y(t)) * sln(t)) ,n(t)dt + a / _in(t) #n(t)dt
O O

T T T
=t=_^_ n n n

__IA I ain(t) °0 n(t)dt + _A k2 ] si n(t)°_ n(t)dt + m I _in(t)_n(t)dt
+

o O O

T T

+ .5e_B_A ) n •5_ (B-A) k2 n
A ]' [ al n(t) 12dr + _ J" [a_(t) ]2dr (3.8)

A
O o
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Before applying Parseval's theorem to the integrals on the right

_,n(t) •_nhand side of equation (3.8), the and o_ (t) terms must

n* • n*

be replaced by o¢ (t) and s¢ (t), respectively and the upper

limits on the integrals changed to _. The only new step

T T

required is by the / n _'0n(t)]2dt and / n[_¢n(t)]2dt terms.
o O

• n* n

Let a_d(t) = a_n*(t) - _¢n(t) and _ d = o_ (t) - o¢ (t) where

_d(t ) • n*..is that component of GO I.t) outside (O,T n) and (Jcd(t) is

that component of a_t) outside (O,Tn). Then

d

[ [_ n(t )]2 dt = / [_ n*(t)]2dt - f [$_ (t)]2dt
O O O

(3.9)

and

n(t) ]2dr f n* d(t) ]2dr . (3.10)f [o¢ = [a@ (t) ]2dt - / [a¢
O O o

Using the convolution theorem together with straightforward

bounding techniques gives

t

_ f [ f IF-l(i"C(j_)) Idl]2dt
of [_¢d(t)]2dt < i@n(t) 12max T t-T

n n (3.11)

and
_ t

o_ [°_(t)]2dt <-lcn(t)12max _ [ "/"
T t-T
n n

IF-I(c(J_)) I d_ ]2dr. (3.12)

With (3.9) and (3.10) used on the modified right hand side of

(3.8), the &izerman and Gantmacher com_letlng the square approach
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together with condition (3.1) gives a bound on all of the integrals

on the modified right hand side except for

o/ [x(t) * o_d(t)]_n(t)dt + .5a(B-A)A I [°_ d(t)]2dt +
o

T
n

.5 (B-A) k2 d(t_ t + .5a(B-A) / • nA / [a, A [ai (t)12dt +
o O

T
n

•5a(B-A) / ]2drA [°in(t) "
o

(3.13)

Using the result obtained for the first integral of (3.13) in

Chapter I together with (3.11) and (3.12) gives that the left

hand side of (3.8) is less than or equal to

M I + l_n(t)12 M 2
max

(3.14)

where M I and M 2 are positive numbers independent of Tn. Using

(3.6) and (3.7) gives

T
n

/ ((a(t) + x(t) + y(t)) * on(t)) _n(t)dt + _A _m(t)
O

< _A _ (0) + M I + lcn(t) 12 M 2
-- m max

(3._)

a(t)

where _m(t) = f _m(a)da. The above inequality shows that c(t) is
o Tn

bounded and that I a(t)_(t)dt is also bounded, thereby demonstrating
o

asymptotic stability in the large. Q.E.D.
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Example 3.1. Let G(s) = (s +.0001)(s +_.05) The problem is

(s + .l)(s + 1) 3 "

to find the characteristics of the time varying nonlinearity

that is permitted if the system is to be asymptotically stable

in the large. G(J_) has a leading phase angle outside the +_90°

band at low frequencies and a lagging angle outside this band

at high frequencies. A convenient choice for Z(s) is (-s+. 05) (s+l) / (-s+. l) .

Z(s) G(s) is then (-s 2 + .0025)(s + .O001)/(-sZ+ .01)(s + 1) 2, the

real part of which is non-negative for all _. Also, since

Z(s) = s + 1.05 - .055/(-s + .i), both x(t) and y(t) are
+_

non-posltlve and f (Ix(t)l + ly(t) l)dt = .524. Therefore, from

(3.3) it follows that B/A < 1.91. Next k is determined by

working with (3.1) with E = 0. The largest allowed value is

k = 2. iO . Therefore, any continuous time varying nonlinearity

with a monotone bounding function _m(a) such that the B/A inequality

is satisfied and having a linear bound with a slope less than

2. IO is permitted. An example of an allowed function is

_(o,t) -- po(l + q cos _ot)/(l + Iol), where 0 < p < i._ and

0 < q < .312. For this case _m(a) = ps/(l + I_I).

The next theorem gives a bound on the response for

being a time varying nonlinearity.

J
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Theorem 3.2. For the system of figure i excited by initial

conditions let a and b of theorem 3.1 hold and let

e. Re H(j_) = Re[c(l + djm + X(j_) + Y(jm)) G(j_ - a)

+ E(G(jm - a) + i/k) + da G(Jm - a) +

d (B-A_ (k2 + a2 + 2) IG(j m _ a) 12
2A

] > 6 > 0 (3.16)

for all real m where a is a positive number whose magnitude is less

than the magnitude of the real part of the pole of G(s) closest to

the Jm axis and c, d and E are positive numbers, x(t) and y(t) are

composed of delayed impulses and a piecewise continuous function

that satisfies x(t)=0 for t > 0, y(t) = 0 for t < 0 and x(t) ! 0 for

t < 0 and y(t) ! 0 for t > 0. The magnitude of the piecewise

continuous component of x(t) is assumed to be less than E

exp(ft) where E and f are positive numbers and

f e-altl Ix(t)+ y(t)Idt< 1.

alb

-2aT f m2(t)dt

¢m(Tn) n o + _ (0) +Then, <_.e [ 4dA m

(3.17)

M(T n) lcn(t) 12max
+

dA

o(T n)

where _m(Tn) = f
o

R(T n)

--_] (3.18)

Cm(O)do and m(t) = F-I[P(Jm) Q(Jm)] with

at oin(t) in( [oin(t)eatp(t) = e [(c + 2ad + E) + d o t)] + c * (x(t) +

y(t)) ]h d(B-A) eat k2
+ A [°i n(t) + °i n(t)]"
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Q(jm) is defined by 1/Re H(J_) - Q(jm) Q(-Jm),

T
n t t-I

M(T n) = c f eat f ea(t-l) f
o -_ t-l-T

n

]g(E)l]x(_)IdedX dt

2at t
+_ f e [ f

A
T t- T
n n

]F-l(jm G(jm)) I dl]2dt +

t

.5d(B-A) f e2at [ f
A

T t-T
n n

[F-I(G(Jm) ]dl]2dt, and

R(Tn) = _A

T

n 2at n 2

f e ([oi (t)] + [_in(t)]2)dt.
O

Proof. The proof o_ this theorem is similar to that of theorems

1,2, 2.4, and 3.1. A modification required for this case occurs

T
n

2at
for the f e _(t) _(o,t)dt term. It may be rewritten as

O

T T

n 2at
n 2at _(t) _(_,t)dt A f ef e " ;(t) ,m(O(t))dt +

O O

T
n

2atf e
0

o(t) _2 (o, t)dt. (3.19)

Integration by parts gives for the first integral on the right

hand side of (3.19)

2aT T
n n 2at

Ae _m(°) - A _m(o(0)) - 2aA f e *m(t)dt.
O

(3.20)
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The second integral on the right hand side of (3.1q) is less

than

T
n .2 k2 o2 e2at'_--_-_ f [o (t) + (t)] at

A
O

Using these modifications together with the approaches already

employed gives the proof of the theorem. Q.E.D.

The conditions of the theorems for the time varying

case are a good deal more complicated than their time invariant

counterparts; there appears to be no way of simplifying these

results and still obtaining improved conditions for asymptotic

stability.

(3.21)
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B. Application to Sampled Data Systems

In this section the techniques of the foregoing work are

used to derive an improved stability criterion for sampled data

systems. To the authors' knowledge, the best results obtained

thus far for the single nonlinearity system are due to

Jury and Lee [20]. Their criterion includes that of Tsypkin [21]

as a special case. For asymptotic stability in the large it

is required that the following relationship be satisfied on

the unit circle:

, Inl * 2
Re G (z) [i + q(z - i)] + I/K- K' _ I(z - I)G (z) l > O,

2

< K'. In the above inequality
where 0 < _(o)_o < K and da

(z - i) is analogous to the J_ term in the Popov criterion.

Theorem 3.3 given below permits an entire class of multipliers

to be used.

a. A Theorem for Monotone Nonlinearities

Theorem 3.3.

hold:

a.

be

For the system shown in Figure ii let the following

0 ! d_(o)/do ! k2 where k 2 is a positive number, both _(o)

and o - _(o)/k 2 = 0 only for o = _(o) = 0, and d_(o)/do _s

a continuous function of o.

G (z) is a rational function of z having all of its poles

inside the unit circle and the corresponding time function

g(i) is zero for i negative. The numerator and the denominator

*

of G (z) are assumed to have no common factors outside or

on the unit circle in the z plane.
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c. Lim (a- _(a)/k 2) _/l_(a) 12 = _.

Then a sufficient condition for asymptotic stability in the

large is that

Re [R*(z) (G*(z) + i/k2)] >__0

for z = ejmT for 0 < m < 27 where

(3.22)

R (z) = l+ X (z) +Y (z) • (3.23)

The time function x(i) = 0 for i > 0 and ! 0 for i < 0 while

y(i) ffi0 for i < 0 and <__0 for i > 0. These functions must

also satisfy

[ (Ix(1)l+ iy(i)l) < 1. (3.24)

The magnitude of x(i) is less than _ exp (fi) where £ and f

are positive numbers.

Corollary i. In addition to the conditions of theorem 3.3, if

_(_) is an odd monotone nonlinearity, that is, if _(a) =-_(-a),

the assertion of the theorem holds with x(i) and y(i) permitted

to take on positive as well as negative values.

Corolla_ 2. If G (z) has poles on the unit circle, G (z) is

required to be stable in the limit; that is for an arbitrarily

small positive number E, the roots of i + cG (z) must all lie

inside the unit circle. Also, the slope condition becomes

> 6 > 0 where 6 is an arbitrarily small positive number. The

other conditions are unchangedexcept for (3.22) being _ 61 > 0.
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Proo._____f.First it will be shown that

n

[
i=o

_n(i) (on(i) - _n(i)/k2) +

n i

[ _n(1) [

i=o h=-=
Ix(h) + y(h)][on(i - h) - _n(i - h)/k 2] =

n

c(n) [ # n(i) (on(i) - _n(i)Ik2)
i=o

(3.25)

where c(n) is a positive number. The second summation on the

left hand side can be rewritten as

n o

I _n(i)l
i=o h=-®

x(h) [on(i h) - _n(i - h)/k2] +

n oo

[ _n(i) [
i--o h=o

y(h) [on(i - h) - _n(i - h)/k2] . (3.26)

Interchanging the order of summation gives

O n

[ x(h) [
h=-= i=o

#n(i) [on(i - h) - _n(i - h)/k2] +

oo n

y(h) [
h=o i=o

n(i) [on(i - h) - #n(i - h)/k2] . (3.27)

n

Rewriting _ _n(i) [on(i- h) - %n(i - h)/k2] in terms of the
i=o

positive and negative components of _n(i) and on(i - h) - _n(i - h)/k 2

and applying lemma i given at the end of Chapter 2 results in
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n

[
i=o

_n(1) [on(i - h) - _n(i - h)/k2] <_

n

[
i=o

_n(i) [on(i) - _n(i)/k 2 ] (3.28)

Using (3.2Z) from the statement of the theorem together with

(3.28) shows that (3.25) holds.

Letting on(i) = o_n(i) + oin(i ) in the left hand side

of (3.25) gives for this side of the equation

n

i=o
#n(i)(o n(i) - #n(i)/k2) +

n i

i=o h=-_ [.(h) + y(h)][ocn(i - h) - ¢n(i - h)/k2] +

m i
n

[ _n(i)[oi (i)+ [
i=o h=-_

[x(h) + y(h)] oin(i - h_

n*

Let o_n(i) be replaced by a__ (i) where

(3.29)

o_ n*(i) = -Z-I[G*(z) z[_n(i)]].

This substitution can be made without changing the values of the

summations in the first two summations of (3.29) except for the

term involving x(i). Since x(i) is not zero for i < 0, the value

n*

of o_ (i) for i > n will contribute to the result obtained by
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convolution. Therefore, the summation involving x(i) is

handled separately by making the substitution

n n*(i ) _ g d(i )_ (i) _

which gives for the total summation where the limits on I have

been extended to + _,

_n(i) (g n*(1) _ _n(1)/k2) +
i---®

+_ i
n*

[ _n(i) [ [x(h) + y(h)][o_
i---_ h=-co

(i - h) - _n(i - h)/k 21

+_ i

[ _n(i) x(h) o_d(i - h) .

i

With o_d(1) ffi [ g(i-m) _n(m), i >__n, using the exponential
m=i-m

character of g(1) and x(_) as in the proof of theorem, i.i it can

be shown

(3.30)

+_ i

] [ sn(1) [

i--= hffi-- x(h) o_d(i - h) I < Mll_n(1) l2-- max
(3.31)

where M I is a positive number independent of n and lsn(1) Imax is the

largest magnitude of sn(i) for 0 ! i ! n. Applying the Llapunov-

Parseval theorem to the first two summations of (3.30) gives

i-- f
2_

[i + X*(e jmT) + Y*(eJmT)][G*(e jmT) + i/k 2] Iz[_n(1)]I 2 dmT

(3.32)
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where T is the sampling period. Since the imaginary part of the

integrand does not contribute to the final result, (3.32) may

be rewritten as

_--f
2_

--IT

Re[l + X*(e jmT) + Y*(eJmT)][G*(e jmT) + ilk 2] Iz[_n(i)]l 2

(3.33)

d_T

which is non-positlve by (3.22). Combining (3.251 with (3.29),

(3.31), and (3.33) gives

n

c(n) [ _n(i)(on(1) - _n(i)/k2) _< Mll_n(i) l2max +

i=o

n i

I [ _n(i) [°in(i) + [
iffio h=-_

[x(h) + y(h)] oln(i - h)]S. (3.34/

The second summation on the right hand side of (3.34) is less than

or equal to

n

I I% (i),l
l*nci) Imax i=o h'--

[x(h) + y(h)] oln(i - h_I

= I_n(i) Imax M 2 (3.35)

where M 2 is a positive number independent of n. Using (3.35) in

(3.34) gives

c(n)
n

I
iffiO

_n(i)(on(i) - sn(1)/k2) <__MllSn(1) 12max + M21%n(i) Imax.

(3.36)
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Let n be chosen such that ''l_n(£)Imax occurs at i - n. Using

condition c of the statement of the theorem it follows that

n _no (i) and (i) are bounded. Also, since the right hand side

of (3.36) is independent of n, it follows that an(1) and _n(1)

approach zero as i approaches infinity. Because of the assumptions

on G (z), it also follows that the other state variables of

the system are also bounded and approach zero as i + _. _lerefore,

the system is asymptotically stable in the large. Q.E.D.

The assertion of corollary I follows from the application

n

of the lemma given at the end of chapter 2 to I _ _n(i)(o_(i-h) -

i=o

#n(i-h)/k2)l to get as a bound on this quantity
n

_n(i)(on(i) - _n(i)/k2). The remainder of the proof is
i=o

unchanged.

Corollary 2 follows from the transformation

_(o) = _I(_) +ca and GI (z) = G (z)/l + EG (z) which results

in a system that satisfies the conditions of the theorem.

An Allowed R (z)

z - z - ch

a I a 2
<b z.!0 < < bI < < b 2 ... < a n n

i < cI < dl< c2 < d 2 ... < c < d .m m
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Expansion of this function in a partial fraction expansion

gives where A i and B h are positive numbers

Ai Bh

I - li z-ai + hl Z_dh

I -i

A. z Bh/d h

= i-[ i
I i 1 - ai z-I i - zfd h

I
I
I

from which it is seen that both x(i) and y(i) are non-positive.

The total area

Ix<i>l + lyci) l i - b i i - ch

Therefore, this function is an allowed one for the general

monotone nonlinearity.

* 3.6 1.2

Example 3.2. Let G (z) = _ z - .3 and 0 < k2 < i.

* z + .3..z + .9)
G (z) + i/k 2 = (z_---j--_)(_ .

* z - ,3
Let R (z) = z+.3"

Expressing this function in the time domain gives

I
I
I

* mR (z) ffiI -,6z -I + 2(.3)2z -2 2(.3)3z "3 + ...

from which it is seen that y(t) takes on both positive and negative

values and that the summation of the magnitude is 6/7. Therefore,

this R (z) may be used with symmetrical monotone nonlinearities.
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R (z) (G (z) + i) = (z + .9)/(z- .9). The angle of this

product on the unit circle is - tan-l(9.48 sin _T). Therefore,

the criterion is satisfied and the system is asymptotically

stable in the large for the given range of k 2.
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C. The Multiple Nonlinearity Problem

Application of the by now standard approach gives the

following theorem for a system having a number of nonlinearities.

Theorem 3.4.

For a continuous system with i nonlinearities let the

following conditions hold:

a. 0 ! d _i(oi)/dcl !k2i where k2i is a positive number,

both _i(oi) and o i - _i(oi)/k21 = 0 only for oi = _i(oi) = 0,

and d_i(ol)/do i is a continuous function of O i •

b. The transfer function - Gij(s) relating F(oi(t) ) to

F(_j(t)) is a rational function of s with the number of zeros

at least one less than the number of poles and with all of

the poles in the left half s plane.

ci

c. Lim / ,i(oi)doi/i,i(o i11 2 = _.
o

I%1 * ®

Then a sufficient condition for asymptotic stability in the

large is that the Hermltlan matrix H(J_) be positive semi-

definite where

hll(Jm)

H(JO) = h21(J_0)

hl2(Jm) ......

h22(Jm) ......

h (J_)
nn
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where hii(Jm) = Re Zi(Jm) [(Cli(Jm) + i/k21)] and

I (Jm) + Zj(Jm) Gji(Jw)] for i < Jhij(Jm) = _ [Zi(Jm) Gij

and hij(Jm) = hji(Jm) for i > J.

Zi(Jm) = i + _iJm + Xi(J_0) + Yi(jm)

where si is a positive number, xi(t) = 0 for t > 0 and Yi(t) = 0

for t < 0 with both of these functions being non-positive and

consisting of the sum of a piecewise continuous function which is

Fourier transformable and shifted impulse functions that satisfy

f (Ixi(t) l + lYi(t) l)dt < i.

Corollar_l. In addition to the conditions of theorem i, if

¢i(oi) is an odd monotone nonlinearity, the assertion of the

theorem holds with xi(t) and Yi(t) being permitted to take on

positive as well as negative values.

Proof. The proof of this theorem parallels that of theorem i.i

but instead of working with one function there are n functions.

The only variation occurs after applying Parseval's theorem. The

quadratic form that is obtained is associated with a Hermitian matrix

which is required to be positive definite. After applying this

condition, Zhe inequality given below is obtained.



I
I

I
I

I

I
I

i
I
I

I
I

I

I
I

I
I

I

104

T
n n

[ ci (Tn) f
i=l o

n

Ion(t) - _i(t)/k 2] _i(t)dt +

n n n

7. _i _i(Tn ) --< [ Mli I_i n(t) 12max + [
i=l i=l i=l

M2i l_in(t) Imax

n

+ [ =i _i(°)"
i=l

The reasoning of theorem I leads to the conclusion that all of

these variables are bounded and approach zero as t ÷ _.

Example 3.3. This example was considered by Ibrahim and

Rekasius [22]. The system consists of two nonlinearities connected

in a single loop with linear elements in between. Gl(S) = I/(s+5)

and G2(s) = (s+l)/(s+2)(s+3). For this case, Gll(S) = G22(s) = 0,

Gl2(S) = -i/(s+5) and G21(s) = (s+l)/(s+2)(s+3). The + sign

for G2_s) is due to the feedback being nesative. It is assumed

that both nonlinearities are continuous monotone functions.

ReZIReZ 2

k21 k22

i Zl(S_)

4 (I_ + 5)

z26j_) (-J_ + 1)] 2

(-J_ + 2)(-J_ + 3) ] >_ o.

If asymptotic stabilit_ in the large is to be shown for

0 < k21 < _ and 0 < k22 < ®, two functions Zl(Jm ) and Z2(Jm)

must be found such that the quantity inside the magnitude squared

brackets is zero. This requires that

zi{j,,,) Z2(-Jm)(-Jm + i)

(_+5) (-j_+ 2)(-j.,+ 3)
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Let Z2(J o_ (-'In+ l)(Jm + 3_ 5= (-J_ + 2) = j_ + 4 -J_+ 2
and

Zl(j_) = (I_ + 5)(._I_+ I)(,I_+ i) . j_ + 5
(-Jw + 2)(J_ + 2)

_9 2_!
4 4

Jm+ 2 -J_o + Z

A check of the integral magnitude condition for these two

functions reveals that they are allowed functions for general

monotone nonlinearities. Substitution of these expressions

gives ( 2 + 1)/( 2 + _) on both sides of the equation. There-

fore, it has been shown that the given system is asymptotically

stable in the large for monotone nonlinearities having

arbitrarily large slopes. In [22], asymptotic stability

i was shown for k21 = k22 = 6.

I
I
I

C._.m;_.mm;._m.

This chapter has applied the method of chapters i and 2

to get improved theorems for a time varying nonlinearity, for a

sampled data system, and for a system with a number of nonlinearities.

In order to show how useful these theorems are, it will be necessary

to consider a number of different examples for each case.
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Vl . CONCLUSION

From the conclusions given at the end of each chapter it

is apparent that additional research in the area of time-frequency

domain stability criteria should be worth-while. In particular, the

problem of the closeness of the stability results to the actual

absolute stability boundary is an important one for future study.
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III CHAPTERI. THESTABILITYOF SINGLENONLINEANITY
CONTINUOUSSYSTEMS

A. Introduction

This chapter deals mainly with sufficient conditions for the

asymptotic stability in the large of the system shown in Figure i with

$(o) a continuous monotone increasing nonlinearity. Several recent

works have considered this problem [1-4]. Reference[_ by one of the

authors concerns a part of the research presented in this report,

namely corollary 3 of theorem i.i and a simplified version of

theorem 1.2. Brockett and Willems [3] presented a sufficient

condition for the asymptotic stability of this system with the

nonlinearity being a continuous monotone function. With 0 ! d$/do ! k2,

it was shown that

Re[Z(Jm) (G(jm) + i/k2)] >__0

is a sufficient condition for asymptotic stability where Z is either a

physically realizable RL driving point impedance function or its recip-

rocal. Z allows the angle of G(Jm) + i/k 2 to lie outside the ± 90 ° band

in only one direction. In other words, the polar plot of G + i/k 2 is

restricted to lie in three quadrants. The present work presents a

theorem for the monotone nonlinearity which permits a larger class

of Z multipliers to be used, thereby allowing G + I/k 2 to lie in four
!

quadrants. The same approach is applied to give improved conditions

for the asymptotic stability of a system with a single odd monotone

nonlinearity and for a system with a nonlinearity having a monotone

bound.
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In using the following theorems, if the nonlinear characteristic

satisfies kllC I < l_(c)l, the linear transformation _l(C) = _(c) - klC

giving Gl(S) = G(s)/(l + klG(S)) should first be carried out, provided

that in the case of theorem i.i #l(C) is a monotone increasing function.

The theorems are then applied to the transformed system with nonlinear

characteristic _l(C) and transfer function GI(S ).

In the following work the notation _(c) is used when the

properties of the nonlinearity are under consideration and _(t) is

used when the time varying variable _(c(t)) is being discussed.

B,

Theorem i. i

me

be

Ce

A Theorem For Monotone Nonlinearities

For the system shown in figure I let the following hold:

0 <__d_(o)/da <__ k 2 where k 2 is a positive number, both _{_)

and o - _(_)/k 2 = 0 only for o = _(o) = 0, and d_(o)/do be

a continuous function of _.

G(s) = N(s)/D(s) with the degree of N(s) at least one less

than the degree of D(s) and with the zeros of D(s) in the left

half s plane. N(s) and D(s) are assumed to have no common

factors in the right half s plane or on the J_ axis.

Elm f _(a)do/l_(_)I 2 = _ or

o

eim I_(o)l = hlo I where h > 0.

I°I -



Then a sufficient condition for asymptotic stability in the large is

that

Re[Z(s)(G(s) + i/k2)] _ 0 (i.i)

for s = j_ for all real _ where

Z(s) = 1 + _s + X(s) + Y(s). (1.2)

The time function x(t) = 0 for t > 0 and y(t) = 0 for t < 0. Both

of these functions are assumed to be the sum of a piecewise continuous

function which is Fourier transformable and shifted impulse functions

that satisfy

f (Ix(t) l + ly(t) l) dt < i (1.3)

with both x(t) and y(t) ! 0. The magnitude of the plecewlse continuous

component of x(t) is assumed to be less than £ exp (ft) where £ and f

are positive numbers. The contribution of the impulses to the integral

is to be taken as the _rengths of the impulses. _ is a nositlve number.

Corollary I. In addition to the conditions of theorem I.i, if _(o) is an

odd monotone nonlinearity that is, if _(o) =-_(_), the assertion of the

theorem holds with (l._ becoming

+_

f (Ix(t)I + ly(t)l) dt < i where x(t) and y(t) are
m_

permitted to take on positive as well as negative values.

Corollarv 2. If G(s) has poles on the J_ axis, G(s) is required to be

stable in the limit; that is, for an arbitrarily small peeitlve number



e, the zeros of i + eG(s) must all be in the left half s plane. Also,

the slope condition becomes_ 6 > 0 and (i.I) becomes! 62 > 0 where 6 and

62 are small positive numbers. The other conditions are unchanzed.

Corollary 3. If c is not satisfied, the assertion of the theorem

holds with x(t) required to be identically zero.

Since the statement of the theorem is somewhat involved, a

discussion of its various conditions is in order. The slope bound

condition a includes a requirement that d_(o)/do be a continuous

function of s whose purpose is to insure the Fourier transformability

and piecewise continuity of o(t), $(t), and _(t); any other property

insuring this result would suffice. Condition b is used to guarantee

that if c(t) and _(t) are bounded for all t and approach zero as

t ÷ _, the other state variables of the system have this same type

of behavior. In addition, having the degree condition holding allows

the ms term to be used in the frequency domain criterion since it

insures the Fourier transformability of that component of do(t)/dt due

to -_(t). The first part of condition c permits the nonlinear character-

istic to have a behavior which ranges from that of a saturation function

to a linear characteristic for large values of o, with the first men-

tioned function being allowed but not the second. The second part of

this condition permits a linear characteristic.

C. Application of the Theorem

In applying the theorem it is convenient to first draw the log

magnitude and phase plots of G(J_) + i/k 2. Since IG(J_)I approaches zero

for _ sufficiently large, above a certain frequency, _c' IG(J_)I < i/k2'
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and hence the phase angle of G(j_) + i/k 2 will be less than 90 °. The

real part condition will be satisfied with Z(s) = i for _ > _ . If it
-- c

is also satisfied for _ < _c' asymptotic stability will be guaranteed.

If the real part condition is not satisfied for _ < _ , a
c

frequency varying Z(J_) must be chosen in an attempt to show stability.

Since the real part condition is already satisfied for _ _ , Z(J_)
c

should not disturb this property. The general philosophy to be followed

in searching for a suitable Z(j_) function is to observe the frequency

bands in which the angle of G(J_) + i/k 2 lles outside the _ 90° band and

then to try to choose a Z(J_) function such that its phase angle when

added to that of G(J_) + i/k 2 gives a resultant phase an_le which lles

within the -+ 90 ° band.

l.

D. Two Z(s) Nultlpllers

n s+a i m s- cj

(s + b i) _ (s d.) + as
i=l J=l j

0 < a I < b I < a2 < b2 < ... a < bn n

< d
0 < c I < dI < c2 < d2 < ... cm m

The first product is an RL impedance function and the second is

transformed into an RL impedance function by replacing m with -s.

Therefore, the poles and zeros of the first product alternate along

the negative real axis while the critical points of the second product _re
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along the positive real axis of the s plane. Expressing this function

in a partial fraction expansion gives

n f'l m 1.1

i - i=l[ s + bi- j=l[ -s + dj + as

where fi and lj are positive numbers. Since the partial fraction

expansion coefficients are negative for both the left half and right

half plane poles, the time function corresponding to these poles is

non-posltive. Using F(O) = f f(t)dt, where F(J_) is the Fourier

transform of f(t), in conjunction with

n s+a i m s- c.1

(S-_i) _ (s - dj ) - ii=l j=l

gives

n ai

(KT)
i=l I

m
(dj) - i as the area associated with x(t) + y(t)j=l

for this Z(s). Since these time functions are non-posltive and the magnitude

of this area is less than i, the given function is an allowed one for general

monotone nonlinearities.

The phase characteristic of this function is more flexible than the

Z(s) multipliers considered in [4] because it is possible to switch ba_k

and forth from a leading to a lagging function or vice versa if desired.

A typical phase angle plot is shown in Figure 2 for the particular case

n = 2, m = 2. It is to be noted that the magnitude of the angle can

approach 90° as closely as desired.
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Example i. Brockett and Willems [3] indicated that

G(s) =
2

s

4 s3 s2s +a +b + c s+ d

with a, b, c, and d chosen such that the poles of G(s) lie in the

left half s plane was a worthwhile function for future dtudy since

their criterion did not apply to it. This G(s) is to be considered

assuming that k 2 is large but finite with the nonlinearity required

to be monotone. An angle plot of G(J_) + i/k 2 is given in Figure 3.

Let Z(s) = _-s + p)(s + r)/(-s + q) with p < q. Division of the

numerator by the denominator shows that this Z(s) belongs to the

function i class with n = 0, m = i. The reason for this choice of

Z(I_) is that its angle lags at low frequency and leads at high

frequency, which is the required behavior if the angle of the product

function is to lie within the ± 90° band. The variation in angle

for G(J_) + i/k 2 at low frequency can be handled by choosing p

sufficiently small. However, a problem is encountered in following

the variation from near + 180 to - 180 ° .

real poles located at - a I, - a2, - a 3,

is with s = J

(-s + p) (s + r)
{-s + q)

First, let G(s) have four

and- a4. Then Zfs){Gfs)+i/k2)___ _ _ _ _

2

s ] + R_.__
[(s + al)(S + a2)(s + a3)(s + a4) k 2

where R(s) is the even part of Z(s).

above with q = aI and r - a2 is

The angle of the first term
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180 ° - tan -I __ tan -I __.._ tan -I

P a 3 a 4

The value of p can be chosen small enough such that at low frequency

when the magnitude of the first term is equal to R(j_)/k 2 which

itself is positive, the above angle is less than 90 ° . Since (l._is

satisfied, asymptotic stability in the large is guaranteed.

Next, consider the case of G(s) - s2/((s 2 + 2 _ s + _ 2)x
m m

(s + al)(S + a2)) where _ < i and _m > O. The angle of

Z(j_) G(J_) in this case with q and r chosen equal to aI

and a2 respectively is

180 ° - tan -I _ _ tan -I
P

2 _m

As before, a suitable choice of p will make the angle of Z(Jm)(G(j_) + i/k 2)

lie in tile +-90° band for all m and asymptotic stability in the large

has been shown.

2
Finally, let C(s) = s2/(s2-- + 2 _mm s + mm) . The angle of

Z(J_) C(J_) is, with r = q= ,.,
m _

180 ° _ tan -I _ +2tan -I
P

[i - 2_ - (___)2].
£0
m m

[i - (i - 2_)(_----)2]

m

If _ > .5, and p suitably chosen,(l.l)is matisfied and asymptotic

stability in the large is demonstrated. This Z(s) will not satisfy

(I.I) for _<.5 and hence no information is available on the stability
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of the system. Fitts [5] has shown that periodic solutions exist

3
with ¢(o) = o and _ = .01 for the 2 pair complex conjugate pole

case. The author has obtained steady state oscillations with ¢(o)

an odd saturation function for _ = .045 and with _(o) an unsymmetrical

saturation nonlinearity for _ = .075.

In summary, with a monotone nonlinearity asymptotic stability

in the large can be guaranteed for the given G(s) if the poles are all

real, if two are real and the other two complex, or if all four are

complex provided that _ > .5.

n

2. i + I ai exp(bls) + as with the bi'
i=l.

s being real numbers,

> 0, and [ fall < I.
i--i

If all the ai's are negative, this

multiplier can be used for a general monotone nonlinearity but if

some are positive, the nonlinearity must be an odd function. The

n n

angle of this Z(s) is tan -I (( I ai sin bl_ + _)/(i + I a i cos bi_)).
i=l i-i

This multiplier is capable of providing a rapid change in phase shift

from near -90 ° to +90 °, but the periodic nature of the exponential

part of this function can make it a difficult one to work with.

n

A useful special case results when I ai exp(blJ_) =
i=l

n/2

J I 2a i sin bi _ with
i=l

n/2

this case is tan-l( I

i-i

n/2

l 21ail < 1.
t=1

The angle of Z(J_) for

2a i sln b i _ + s u) which is simpler than

the general result. On the other hand, the angle variations in the

function are constrained; if _ is a very small number, the angle
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lles in a _ 45 ° band at low frequencies. The use of this class of

multiplier is illustrated by the following example.

Example 2. Dewey and Jury [2] considered the case of G(s)=40/s(s+l)(s2+.8s+16)

using their criterion for monotone nonlinearities and showed stability

for nonlinearities having a slope restricted to (E, 1.43). The system

is stable for linear gains in the sector (_, 1.76). Because G(s) has

a pole on the j_ axis, corollary 2 must be applied rather than the

theorem. From the root locus plot _or i + cG(s), where ¢ is a small

positive number, it is seen that G(s) is stable in the limit. From the

Figure 4 plot of the angle of G(J_) + 1/1.76, the angle lles outside the

± 90° band in the frequency ranges 0-2.75 and 2.97-3.75, lagging in the

former case and leading in the latter. Although the peak deviation

outside the ± 90 ° band is only 36° in the lagging direction and 16°

in the leading direction, the peak slope of the angle in making the

transition from outside the ± 900 band to the inside is about 60°/radian,

making it impossible to use a Z(s) of the function I class. The magnitude

of the slope of a Z(s) function belonging to the type i class is less

than or equal to the slope of the angle of the double pole function

2 tan -I _/a which is 2a/(_ 2 + a2). For _ = a = 3, approximately the

values which would have to be chosen in attempting to use the function,

the slope would be about 20°/radlan, less than half the required value.

Therefore, a function of the type 2 class is chosen in an effort to

show asymptotic stability. Since the required angle for Z(s) is less
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than 45° , and a leading an_le followed by a lagging an_le is required,

Z(J_) was chosen equal to i + j.999 sin I.I18_ + lO-10j_. Comparing

this function with the time domain condition (1.3) shows that _(o)

is required to be an odd monotone function. The 1.118 coefficient

was picked to give an angle for Z(jw)(G(j_) + 1/1.76) at _ = 2.98,

the frequency at which a zero occurs on the J_ axis for G(J_) + 1/1.76,

of e 90° . The amplitude of the sine term was chosen close to i to

give a large change in angle while still satisfying the integral

condition(l.3)and the i0-I0 coefficient was chosen so that the _ J_ term

does not come into play at low frequencies. The slope of the angle of

this multiplier at _ = 3 is about 60°/radian. The plot of the an_le

of the product function also given in Figure 4 shows that the angle

always remains within the ± 90 ° except for _ = 0, 2.98, and _ at which

frequencies the angle magnitude is 90° . Calculation of the real part

of the product function at _ = 0 gives .738. If k2 < 1.76, the real

part of the product is positive at _ = 2.9S. At _, th_s quantity is

1/1.76. Therefore, since (101)is satisfied with an inequality sign, all

the conditions of corollaries i and 2 are satisfied and asymptotic

stability in the large is guaranteed for slopes in the sector (E, 1.76)

for _(o) equal to an odd monotone nonlinearity.

In order to find an enlarged sector of assured asymptotic

stability for the general monotone nonlinearity, Z(J_) = i - .95

• -lOj_exp(-l.045Ju) + I0 was chosen for use with G(jm) + 1/1.7. The

reasons for the choice of this function and the parameters for this

case are identical with those of the previous case except that the

coefficient of the exponential was chosen to give a zero phase shift
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for Z(Jw) in the middle of the transition region for the angle of

G(jm) + 1/1.7. The slope of the angle of this Z(jm) at m = 3 is

about 30°/radian. Therefore, k2 was reduced to 1.7 when it was

found to be impossible to satisfy (l.l)with the given form of Z(Jm)

and k 2 - 1.76. Figure 5 gives the pertiment plots for this example

which show that the angle of Z(Jm)(G(_m) + 1/1.7) is in the * 90°

band. At m = 0 the angle of the product is -90 ° but the real

part is 2.38 while at m - = the angle is 90 ° with the real part being'

(I-.95cos 1.045m)/1.7. Therefore, the conditions of corollary 2 are

satisfied and asymptotic stability in the large is guaranteed for

the general monotone nonlinearity with slope _n the sector (e, 1.7).

E. Proof of Theorem I.i

Let the system be excited by initial conditions. The assumptions

on G(s) and on _(o) are sufficient to insure the continuity and Fourier

trans£ormability of o(t), o(t), and _(t) on any finite time interval

[6] - [9]. Use will be made of these properties at several points

in the proof. First, it will be shown that

f
O

T
n

((6(t) + x(t) + y(t)) * (on(t) - _n(t)Ik2))_(t) dt -

T
n

c(T n) _ _on(t) - _n(t)Ik2) _n(t)dt (1.4)
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where c(T n) is a positive number and * denotes convolution. The

variables on(t) and _n(t) are equal to their non-superscrlpted

counterparts in (0, T ) and zero outside this interval. Let
n

x'(t) and y'(t) denote x(t) and y(t) respectively wltb_e

impulses removed. The integral involving these functions on

the left hand side of (1.4) is given by

T
n o

f f
O --co

x'(X) (on(t-%)-_n(t-X)/k2)@n(%) d% dt +

T
n co

f f
O O

y'(X) (on(t-l) - cn(t-X)/k2) @n(t) d_ dg (1.5)

since x'(X) = 0 for X > 0 and y'(X) = 0 for _ < N. Because the

primed functions, on(t) and _n(t) are continuous functions of t,

and the integrand is non-zero over only a finite interval of time,

the order of integration may be interchanged [I0] to Rive

o

f x'(X)
--co

co

f y'(_)
o

T
n

f (on(t-h) - _n(t-X)/k2) _n(t) dt dX +
o

T
n

f (on(t-h) - _n(t-X)/k2) _n(t) dt dX.
o

(1.6)

u

With the impulsive component of x(t) given by I a i 8(t + hi) and
i=l

v

that of y(t) by [ c t _(t - di), where a i, b i, ct, and d t are
j=l

positive numbers, their contribution to the ]eft hand side of (1.4) is

T
u n

[ ai f
i=l o

v

[ ci
j=l

(on(t+b i) - @n(t+bi)/k2) _nct) dt +

T
n

f (on(t-di) -cn(t-di)Ik 2) _n(t) dt .
o

(1.7)
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Appearing. in both (1.6) and (1.7) is an integral of the form

I(T) =

T
n

f (on(t - T) - ,n(t - T)/k2) _pn(t) dt
o

(i.8)

where T is a real number. At tbls point a' positive bound will be

developed on (1._). Lot (1.8) be rewritten as

T
n O+(t - T)

I(T) f n= (o+(t - T) ) _2(t) dt +
o k2

T
n ¢n(t - T)

f (on_(t - T) ) bn(t) dt +
o k2 -

Tn n(t - T)

f (o2(t - T) - _+ ) +nft) dt +
o k2 -

T
n _n(t - T)

of (on_(t - T) - k2 ) ¢:(t) dt (].Q)

where the + and - subscripts refer to the positive and negative

values of the associated functions, respectively: as an example

_2(t) is equal to on(t) when 0n(t) > 0 and zero otherwise. The

lemma may be applied to the first two inteRrals since on(t) and

on(t) are continuous functions of time that are zero outside (0, Tn)

the two functions forming the integrand of both integrals are

non-neRative and non-positive respectively, and

d(o-O(o)/k2)/d¢(o) = [d(o-O(o)/k2)/do ][do/dO(o)] -

[1 - (d,(o)/do)(1/k2)]Ido/d¢(o)] >_ 0 , (1.1o)
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showing that o-_(o)/k 2 is a monotone increasln_ function of _(o).

Applyin_ the lemma _ives

T _ Tn * (t - T) n ,n(t_T)
I(T) _ : n

< o (O+(t - T) k2 ) *+(t) dt + of (°n(t-T)- - k2

Tn n _It) Tn _ n(t)

¢_n(t)_dt --< of (o+(t) - --_2---) *+(t) dt + of (°n(t)-- k2) ¢n(t)_dt

T
n

= f (o(t) -.i_)_) ¢(t) dt (1.111
o k2

Using (1.6) and (1.7) hives for that part of (1.4) involvin_ x(t)+y(t)

-_m u v

f (x'(l) + y'(l))l(l) dl + _ ail(-b i) + _ cil(di).
-® i=i j=1

(1.1.2)

Now, since x'(%), y'(%), a i and ci are non-positive, application

of (I.ii) and (1.12) yields

T
n

/
O

((x(t) + y(t)) * (on(t) - _n(t)/k2)) _n(t) dt >_

[f (x'(_) + y:'(X)) d_ + _ ai + _. ci] I(O) .
-_ i=1 j=i

(I.i__)

Using (1.3) from the statement of the theorem it follows that the

left hand side of (1.13) is greater than -I(0) and hence that the

assertion of (1.4) is correct.

The next step in the proof is to apply Parseval's theorem to a

part of (1.4) and to use the frequency domain condition (I.i). Let

on(t) = o n(t) + Gin(t) and on(t) = o_n(t) + oin(t) where o_n(t) and

o_n(t) are those components of on(t) and on(t), respectively, due to the

)X
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feedback signal -¢(t) and 0in(t) and oin(t) are due to the initial
"<i.

condition excitation of the system. Then

T
n

f
O

((_(t) + x(t) + y(t)) * (on(t) - _n(t)/k2)) Cn(t) dt +

T T
n n

a f on(t) sn(t) dt = f
o o

((_(t) + y(t)) * (%n(t) - sn(t)/k2)) an(t) at +

T
n

f
O

(x(t) * (o_n(t) -_n(t)/k2)) _n(t) dt +

T
n

f o_n(t) an(t) dt +
O

T
n

+ f ((6(t) + x(t) + y(t)) * oin(t)) _nct) dt + a
O

T
n

f oin(t) Cn(t) dr.
o

(l.l_)

Several substitutions will be made in the integrands 6n the right

n(t) be
hand side of (1.14). In the first and third integrals let o 0

replaced by o_ n *(t) and o_n(t) by _ n *(t) respectively where

and

n * -i
c. (t) = - F [G(J_) F[$n(t)]]

• n _

o, (t) =-F -1 [J _ g(Jm) F[,n(t)]]

-i
with F and F denoting the direct and inverse Fourier transform

operations, respectively. The values of these integrals are unchanged

since the starred quantities are equal to their unstarred counterparts

n *

in (0, Tn). The value of 0_ (t) for t > Tn does not affect the first

since 8(t) + y(t) = 0 for t < 0 and _n(t) - 0 for t > Tn, Theintegral

latter reason also shows that the third integral is not influenced by

• n *

the values of _._ (t) for t • Tn. In the case of the second integral
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n

x(t) being non-zero for t < 0 implies that o_ (t) cannot be

n *

replaced by o4_ (t) without changing the value of this tnteRral.

n *
Therefore, the portion of o_ (t) for t • T must be taken Into

n

account in making the substitution. Let

n * ocn( o d(t)o_ (t) - t) + (1.15)

where o¢d(t) is that component of o_ n *(t) occurring in (Tn,®). With

these substitutions the first three integrals on the right hand side

of (1.14) are

T
n

f ((_(t) + y(t)) * (a¢ n*(t) - ¢n(t)/k2)) _n(t) dt +
O

T
n

n*

f (x(t) * (o,
0

(t) - cn(t)/k2)) cn(t)dt +

T
n
• n*

f a¢ (t) ,n(t) dt
O

T
n

I
o

(ocd(t) * x(t)) _n(t) dt . (1.16)

For the final step in the proof ,a bound is required on the

last integral of (1.16) in terms of Icn(t) Imax, the largest value of

l¢n( t) I in (O,Tn).

t

fl
o

where g(X) = F-l(c(J_)).

]o_ d (t) I is given by

_(X) Cn(t -X) dX] t > T ,
' -- n

(1.17)

Because of condition b of the theorem, it is

possible to find two positive numbers q and r such that Ig(t)l < q exp(-rX).

Using this bound gives

t

locd(t) I <_
t-T

I%

q exp(-rX) ]¢n(t) I
max

dX -

exp(-rt) [exp(rTn)-I ] t • T .(q/r) Icn(t)lmax ' - n (1.18)

%
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The lower limit on the inteRral has been chanRed to t - T since
n

_n(t) is zero outside (0,Tn).

The plecwwise continuous and impulsive components of x(t) will

be considered separately. Since Ix'(t) I < £ exp(ft), using (1.18)

gives

I_¢d(t) * x'(t) I !

r ICn(t)Imax

-T +t
n

I
exp(fA) exp(-r(t-l))[exp(rTn)-l]dA

q

r(r + f) l¢n(t) Imax [exp(rTn)-l] exp(-(r+f)T n) exp(ft) (1.19)

0 < t <T

Using this result gives

T
n

f
O

(ocd(t) * x'(t)) cn(t)dt

T
n

!l¢n(t) Imax I lacd(t) * x'(t)Idt <__
O

£ ql_n(t) I2 max

rf(r + f) (I - exp(-rTn))(l - exp(-fT n)) <_M II¢n(t) 12
max

(1.20)

where M I is a positive number independent of T .
n

For the impulsive case,

and

d u

0¢ (t) * x(t) = _. a i o¢d(t+bi)
i=1

T

n d _n u
I f (o¢ (t) * x(t)) _ (t)dtl <_I lail

o i=l

(1.21)

T
n

f locd(t+bi)¢n(t)Idt.
o

(1.22)
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I_ bi < Tn, the use of (i.19.) in the rizht hand side iDtegral of (1.22)

_ives

T T
n n

f la_d(t+bi )_n(t)dtl --< _r l_n(t) I2 [exp(rTn)-l] /

o max Tn-b i
exp(-r(t+bi))dt

(1.23)

The lower limit on the right hand side integral is Tn-b i since

o_d(t÷bl ) - 0 for t < b i - Tn. Evaluating (1.23) gives

_-2 l_n(t)i2ma x [l-exp(-rTn) ][l-exp(-rbi) ] ! M2il _n_ t) 12max
r

(1.24)

where M2i is a positive number. Finally, if bi > Tn, the left hand

side of (1.23) is less than or equal to

T
n

r l_n(t)_2max[exp(rTn)-l] f exp(-r(t+bi)_t " %l_n( t) l2max X
o r

[exp(-r(b i - Tn)) - exp(-r bi)][l - exp(-r Tn)] ! M3iI_n(t) I2max

(1.25)

where M3i is a positive number. Using (1.20), (1.24), and (1.25) gives

T
u

] f n(o%d(t) * x(t)) #n(t)dtl _< (M1 + [
0 i'l

lailM 3) l_n(t) l 2 max

- Ml#n(t)12
max (1.26)

where M 3 is the largest of the M2i,s and M3i,s and M is a positive

number independent of T . That is the desired bound.
n

Since _n(t) is zero outside (O,Tn) , the limits on the first 3

integrals of (1.16) may be changed to (--,-). Also, because of the
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conditions on the various functions involved, Parseval's Theoremis

applicable to these integrals. Its application gives

f ((_(t) + x(t) + y(t)) * (%n* (t) -_n(t)/k2)) _n(t) dt+

I +oo. n* i +_

f o, (t) *n(tldt = - 2-7 f ((l+X(Jm) + ¥(J_))(G(J_) + l/k 21

+ aJ m G(Jm)) IF[_n(t)]12dm (1.27)

Since the imaginary part of the integral on the right hand side of (1.27)

I

I
I

I
i

I

is zero, (1.27) may be rewritten as

I
m --

2_

+co

f_® Re(l + X(Jm) + Y(Jm) + aJm)(g(Jm) + llk 2) IF[d;n(t)]12d_.

(1.2s)

From (l._it follows that (1.28) is non-positlve. Combining (1.4),

(1.14), (1.16), (1.26), (1.27), and (1.28) gives

T
n n

C(Tn) f (on(t) - _n(t)/k2)_(t)dt +a@(T n) -_(0) 5_
O

T T

n(o d(t ) n nIf • x(t)) ,h(t)dtl + If (% (t) +(x(t) * oin(t)) +
0 0

{y(t) * oin(t))+ aoin(t)) _n(t) dt] (1.29)

< Mien(t) 12 + P[#n(t) Imax-- max
_1.3o)

where

p= f
O

Ioi(t) + x(t) * ot(t) + y(t) * oi(t) + aoi(t)[dt
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and

_(Zn)
¢(T n) = f ¢(o) do.

0

Therefore,

_(Tn) < 1 [M fen(t)12 + eltn(t) Imax] + _(0).-- e max
(1.31)

i

I

I

I

I

I

I

I
I
I

Using the approach given in Lefschetz [II], let T be chosensuch that
n

l_n(t).Ima x occurs at Tn. Then wlth the first part of condition c

h_iding, it follows that o and hence 4(0) are bounded; if this were

not the case, inequality (1.31) would not hold for large values of

[o I. If the second part of condition c holds, a quadratic Liapunov

function may be found using the approach of Rekasius [12] that

shows the boundedness of o and ¢(o).

Since the right hand side of (1.31) is bounded, it follows from
T

(1.30) that f n (on(t) - tn(t)/k2) @n(t)dt is bounded, from which
O

asymptotic stability in the large follows, using the arguments given

in Aizerman and Gantmacher [13]. This completes the proof of the

theorem.

In order to prove corollary i, the lemma is applied directly

to (1.8) to give II(T) I < I(0) instead of I(T) < I(O). (1.13) then

becomes

II
0

T
n

((x(t) + y(t)) _ (on(t) - cn(t)/k2)) cn(t)dtl <

+m u v

If (lx'(x)[ + [y'(1)l)dl + _ Jail +
-® i=l J =I

Icil] I(O). (1.32)

I



27

UsinR the condition of this corollary, it follows that the left

hand side of (1.32) is less than or equal to I(0), from which (]_.4)

follows. The remainder of the proof is unchanRed. This completes

the proof of corollary i.

To prove the assertion of corollary 2, it is first shown

that if

Re Z(G + I/k 2) >__62 • 0,

Re Z(G/(I + EG) + i/k 2) >_ 6 3 > 0

for ¢ sufficiently small. 63 is a positive number. By a straightforward

calculation Re Z(G/(I + cG) + I/k 2) is

Re Z (G + I/k 2) + c(Re Z ) [IGl 2 (i + E/k 2) + 2(Re G)/k 2]

(i + ER) 2 + (EX) 2

The first quantity in the numerator is non-negative. Since Re Z is

non-negative, the second quantity in the numerator may be negative if

-_k 2 +c) < Re G < 0. For this interval E must be chosen small enough

such that the numerator is positive. This is guaranteed by having

-62k 2

¢ < 2Re Z Re G

in the interval. Let the linear transformation _i(o) = _(a) - Eo

be applied to the system. Then G I = G/(I + c G). The stability of

the transformed system will guarantee the stability of the original

system. If c is chosen to be less than both 6 and the right hand

side of the c inequality, the transformed system will satisfy the

conditions of the theorem for the noncritical cases. Q.E.D.
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The proof of corollary 3 follows directly from the proof

of the theorem with x(t) = 0. (1.317 becomes _(T n) < _ l_n(t) Imax + _(0).

Since _(o) is a monotone increasing function of o, for Ioi sufficiently

large the left hand side of this inequality will become greater

than the right, showing that o(t) and _(o(t)) are bounded. The

remainder o4 the proof is mnchan_ed.

F. Theorem for a Nonlinearity With a Monotone

Bound

This theerem is an improved version of one given in [4]. The

two improvements consist of permitting Z(s) to have a corresponding

time function that is non-zero for t < 0 and of taking the symmetry

of the nonlinearity into account, resultin_ in x(t) and y(t) being

allowed to take on positive as well as negative values.

Theorem 1.2. For the system given in figure i let the following

conditions hold:

a. A@m(O) o ! _(o) o ! B_m(°) o, where A and B are real

numbers satisfying 0 < A ! i and i _ B < =, _(0) = _m(0) = 0,

o _(o) < k o2 where k > 0 and o _m(O) • 0 for o _ 0,

d_(o)/do is a continuous function of o, _m(O) is a

continuous monotone increasing function of o having an

odd part _mo(O) that satisfies l_m(O) I ! Cl_mo(°)l and

I*mo(O)l ! Dl*m(O)l.
b. Conditions b and c of theorem 1.1.

Then a ju_ficient condition for asymptotic stability in

the large is that
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Re [Z(J_)G(J_)+ m (G(J_)+ l/k)] > 0

for all real m where E is a non-negative number.

is defined as in (1.2) but (1.3) becomes

BC___V
A

tf +
(x'+(t) + y'+(t)) dt + [ ai + _ Ci] -

_- [f
A

--to

(x'-(t) + y'-(t))dt + [ ai- + [ ci ] < i (1.34)

where x'+(t) y'+, ai + +, , and c i are the positive portions or values

of the corresponding non-superscripted functions or numbers and

x' (t), y' (t), ai , and c i are the negative portions or values

of the corresponding mon-superscripted functions or numbers.

Proof. Starting with (1.4) of the proof of theorem i.i, let this

equation be replaced by

T T
n n

f ((d(t) + x(t) + y(t)) * on(t)) _n(t)dt - C(Tn)of
O

on(t)_n(t)dt

(1.35)

as the condition to be shown. Repeating the steps used to obtain

(1.6) and (1.7) gives

o T n

f (x'+(x) + x'-(x)) f
--to O

T
to n

f (y'+(x)÷ y'-(x)) f
0 0

o(t - A) cn(t)dt dX +

o(t - _,) cn(t) dt d;_ (1.36)

and
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T T
n n

m

ai + f an(t + h i) _n(t)dt + [ a i f on(t + bi)_n(t) dt
o O

T T
n n

+ _ ci + f on(t-di ) _n(t)dt + [ c i f on(t-di)_n(t)dt.
O o

T

I(T) then becomes I(T) = f n on(t _ T) _n(t)dt. At this point the
0

proof differs from that of theorem i for it Is desired to develop

(1.3_)

both positive and negative bounds on I(T). First a bound Is

developed on I(T) I.

T

[I(T)[ ! B f n ion( t _ T) _mn(t) Idt
O

T T
n n

<__BC f lon(t - T) _mon(t)fat 5_ BC f
O O

on(t) Cmon(t)dt

(1.3_)

I n(t) = and_mn(o (t))where use has been made of the lena. _m

_mon(t) = _mon(°(t_)" Continuing the development gives

!
!
!

T T
n n

BC f on(t) _mon(t)dt <__BCD f o n(t) _mn(t)
O O

T
n

< BCD [
-- A J

O

on(t) _n(t)dt .

The negative bound on I(T) is then

I(T) > - BC___DI(O) .
-- A

(1.391

(l.4o)
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For the positive bound the same procedure as In theorem i is uaed

to give

T T T
n 11 n

f °n(t-T)*nct>dt! f o 2(t-T)_2(t)dt+ f o_n(t-T)_n(t)dt
O O

O

T T
n n

<__B f o_(t-T)Cm+n(t)dt + B f on(t-T)_m_n(t)dt
o O

T T
n n

B _n<__B f on(t) _mn(t)dt <___ f on(t) (t)dt . (1.41)
O O

Using these two bounds in (1.367 and (1.371 _Ives

T
n

f
O

((x(t) + y(t)) * on(t)) _n(t)dt >

BCD ,+
--_ [f (x'+(1) + y (I)) dl+

+
ai + X ci +] I(o)

+_ [ f (x' (1)+y' (%))d_+ I a i + I cI ] I(O) . (1.42)

Using (1.42) and (1.34) gives (1.35). The remainder of the proof is

similar to that of theorem I with the left hand side of (1.14) replaced

by

T T
n n

f ((8(t) + x(t) + y(t)) .* on(t)) _n(t)dt + a f on(t) _n(t)dt

0 o

T
n

+ E f (°n(t) - _n(t)/k) _n(t)dt • (1.431

0

Q.E .D.
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The frequency domain condition (1.33) is certainly not as

easy to apply as (i.i)_ (1.33) was obtained because of the necessity

of using (1.35) in order to apply the various conditions on _(o).

An example of the application of this theorem is considered next.

Example 3. Let _(o) be an odd function defined for positive

values of o by

_(o) = o , 0 < o < 1.25

- -o+ 2.5 , 1.25 < o < 1.5

- (5o/3)/(1+o) , 1.50 ! o

and let G(s) - K(s + 4)(s + 50)2/(s + .l)(s + l)(s + 1000) 2 , with K

being large but finite. It is assumed that the kinks in the _(o)

curve are smoothed out so that the derivative is a continuous

function of o. A plot of this nonlinear characteristic reveals

that a convenient choice is to take _m(O) as an odd function equal

to _(o) for positive values of o except for 1.25 ! o ! 3.01 for

which interval _m(O) - 1.25. _m(O) is then a continuous odd

monotone increasing function of o. With this choice A = .8, B - C - D z i
+m

and (1.34) becomes f (lx(t)l+ ly(t)l)dt < .8. since K is to be
m_

large but finite, let E = 0 to give Re Z(Jm) G(Jm) _ 0 as the

criterion to be satisfied. G(Ju) has an angle that lies outside

the ± 90 ° band in a lagging direction at low frequencies, Bt higher

frequencies the angle approaches + 90 ° and then - 90 ° at very high

frequencies. Because of this behavior, the Popov criterion will not

show stability. Let Z(s) = (s + l)(s + 1000)/(s + 4). This
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particular function has the proper phase characteristic, that is,

leading at low frequencies, almost zero at intermediate frequencies,

and then leading at high frequencies to give a product with an angle

in the • 90 ° band. Since Z(s) G(s) = K (s + 50)2/(s + .l)(s + I000),

it is seen that Re Z(J_) G(Jm) > 0 for all _. Expressing Z(s) in

a partial fraction expansion form gives Z(s) = s + 997 - 2988/(s + 4).

The left hand side of [434) is .937, and hence this condition is

satisfied. Therefore, the given system is asymptotically stable in

the large.

O. Conclusion

This chapter has presented two theorems which allow the

Z(s) multiplier to correspond to a function of time that is non-zero

for t < 0 as well as for t • 0. This innovation solves the problem

of obtaining a Z(J_) whose angle varies with equal freedom

between 0° - +90 ° and 0 ° - -90 ° . The generalized RL Z(s) multiplier

considered shows that a nonlinear system having a monotone non-

linearity with a slope in the sector (0,k2) is stable provided that

the system is stable for linear gains in the sector (0,k2) and

provided that the angle changes slowly enough with frequency.

Although this work gives improved results, it is not clear how close

these results are to the actual absolute stability limit. Additional

study is needed to resolve this matter.
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While the two Z(s) functions discussed appear to be quite

useful, if it is not possible to show stability with either of these

two, it is not clear how one should go about generating additional

Z(s) functions with more desirable characteristics, other than to

use trial and error. The reason for this is the need to consider

simultaneously both the time and the frequency domain behavior of a

possible candidate for a Z(s) function. This appears to be a

worthwhile area for further research.

Condition c of theorem i.i is one way of guaranteeing the

boundedness of o(t) and _(t). If a certain nonlinearity does not

satisfy this condition, the theorem may still be applied provided that

a Liapunov function can be found that will show the boundedness

of the state variables of the system. However, finding a

suitable Liapunov function may be a difficult task.
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II. Appendix 1

Lemma. If fa(t) and fb(t) are two continuous time functions which

are zero outside the time interval (0, Tn), fb(t) = h(f (t)) wherea

h is a piecewise continuous monotone increasing function of fa' and

if either fa(t) and fb(t) are both always non-negative or non-

positive or h is an odd monotone function with h(0) = 0, then

T
n

/ (fa(t) fb(t) - Ira(t) fb(t + T)l)dt > 0
o

for any real value of T.

Proof. Given a value of T > O, let the summation

n

I
i=l

Ifa(_i ) fb(6i + T) I 6 (AI)

be formed where 6 is a positive number chosen such that T/6 is an

integer and n is chosen such that n6 = Tn - 61 where 61 is a

positive number less than 6. Let a ranking of the magnitudes of

the values of fa(t) and fb(t) that can appear in the summation Be

set up such that [fal I _> {fa21 _• {fa31... for fa and a similar ordering

Ifbl I _ {fb2 I [ {fb31... holds for fb" Since h is monotone increasing

and either an odd function or fa(t) and fb(t) are both always non-

positive or non-negative, values of Ifai I and Ifbj I with the same

numerical subscript occur at the same time or the ranking can be

arranged such that they occur at the same time if two or more magnitudes

are equal. Using the ranked magnitudes_ a table of product values
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that may appear in the summation is formed as indicated below.

Ifbll Ifb21 Ifb31... lfbjl.•. Ifbnl

Ifall falfbl Ifalfb21

t fa21 I fa2fbll fa2fb2

Ifa31

i

Ifail

Ifanl fanfbn

The diagonal elements in this table correspond to the terms that

appear in (AI) with T = O. For any value of T, the terms Ifai I

and Ifb_ I can appear only once, if at all, in the summation. This

means that of the product elements appearing in (AI), only one

element can occur in a given row and one element in a given column

in the table of product values. Also, for T # 0, the summation

terms appear as off diagonal elements in the table• Next, by

using a row and column counting process it will be shown that
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n n

[ fa (6i) fb(6i) >__ [
i=l i=l

for T _ O.

Ifa(61) fb (6i + T) I (A2)

Consider the elements on the right hand side of (A2) that

appear in the first row or first column of the table of product

values. The maximum possible number is two. If it is zero or

one, an inequality falfbl _ _, falfb] _ Ifalfbj I or falfbl _ Ifaifbl I

is formed. The first row and the first column are then removed,

giving a reduced table of product values. If there are two elements,

it it necessary to consider three cases.

a. The two terms are Ifajfbl I a_d Ifalfbjl. In this case the

two diagonal terms falfbl and faJfbj are used to Rive the

inequality falfbl + fajfbj t Ifajfbll + Ifalfbj[" Since the only

two elements possible in the first and Jth rows and columns have

been bounded by the diagonal terms associated with these rows

and columns, the _rst and Jth rows and columns are removed,

giving a reduced table of product values.

b. The two terms are ifaifbl [ and IfalfbJl with i < J. An

that may be written is falfbl + faifbi _ Ifaifbl I + Ifalfbi I.inequality

If there is no term in the ith column, Ifalfbi I is used to bound

Ifalfbjl, since Ifalfbi I ! IfalfbJl , giving as the desired inequality

+ faifbi t Ifaifbl I + IfalfbJl" The first and ith rows andfalfbl

columns are then removed to give a reduced table of product values.

If there is a term in the ith column, say Ifakfbi I, the !fakfbi I

and IfalfbJl terms are bounded by the Ifalfbi I term and the IfakfbJl
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term, giving the inequality Ifalfbil + Ifakfhll >_ Ifalfhj! + Ifakfbil.

Combining this bound with the one involving ifaifbl I _ives

falfbl + faifbi + IfakfbJJ t IfaifblJ + IfalfbJI + Ifakfbi I as the

overall inequality resulting from this step. The lfakfbjl term has

been borrowed to obtain the bound. This term is not an element of

the summation since the kth row and jth columns by hypothesis each

have one element. A reduced table of product values is obtained

by deleting the first and ith rows and columns and add_mg the Jfakfbj I

term as one to be bounded by the remaining diagonal elements. The

array obtained has the same properties as the original array with regard

to each row and column having only one element. Therefore, the

process may be repeated on th_ reduced product value table.

c. Thetwote=s are IfaifblIand Ifalfb_lwithi > J. The

strategy of b is repeated with the roles of the ith and Jth

column being taken by the Jth and ith rows, respectively. The

process is then applied to the first row and column of the reduced

table of product values and repeated until there are no terms

left in the final reduced table. Adding to_ether the ineaualities

obtained at each stage of the process gives the left hand side

of (A2) plus additional terms greater than the right hand side

of (A2) plus the same additional terms. Upon cancelling the common

terms, (A2) results. From (A2) it follows that

n

[ (fa(_i) fb(_i) - Jfa(6i) fb(_i + T_I)_ O.
i=l
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Sinc e

T
n

f (fa(t) fb(t) -
o

fa(t)fb(t + T_)dt -

n

Z
i=l

(fa(_i) fb(_) - [fa(_i)fb(_i + T)[)_ + F,

where F is a real number that can be made arbitrarily small by

a suitable choice of _, taking the limit as 6 + o gives the

assertion of the lemma for positive T. A similar discussion

shows that the lemma also holds for negative T. Q.E.D.
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IV CHAPTER II. BOUNDS ON THE RESPONSE OF AN AUTONOMOUS

SYSTEM WITH A SINGLE NONLINEARITY

A. Introduction

This chapter is concerned with the calculation of bounds

on the response of the single nonlinearity system of Figure l.

For the first theorems it is assume_ that the external input

to the system is zero and that the system is excited by initial

conditions only. Then, Fourier transformable inputs of a certain

class are permitted in later theorems. If the input is itself

bounded, the bounds which are calculated on the response enable

the showing of Liapunov stability but not asymptotic stability.

The bound that is determined is on the function _(o(t)) and usually

takes one of the forms shown in figure 6. Once a bound has been

obtained on ¢_o(t)), a bound can be calculated for o(t) for

specific nonlinear characteristics.

Pertinent references include the survey paper by Kalman and

Bertram [14] in which it is pointed out that an exponential bound

can be obtained on the response by the use of Liapunov functions.

The maximum value of _/v = -n is calculated over the space in which

the response is confined. The bound is then v(t) < v(0) e-_t. The

bound on v(t) can then be converted into a bound on the system variables.

Sandber_ [15] considered the problem of a time varying nonlinearity

confined to a linear sector and gave a frequency domain condition
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guaranteein_ that the state variables approach zero exponentially

with time. In the single stationary nonlinearity case with a

zero lower bound on the nonlinearity, this frequency domain

condition is equivalent to Re G(J_) > O, which is a rather restricted

criterion. Tsypkin [16] obtained an analogous result using a Popov

type approach for a sampled data system havin_ a single nonlinearity.

Using a Liapunov approach, Yakubovich [17] showed that for a nonlinearity

confined to a sector (0, k), if Re G(J_ - a)(l + aJ_) + i/k > 0, then

the response of the system satisfies Io(t)I !Me-atlo(0)I where M

is a positive number. This last result is similar to the Popov

criterion except for the shift in the argument of G(Jm).

Although the criteria of the last 3 references show the

existence of a bound of the desired type, these references do not

consider the prbblem of calculating a value of M. Also, the

corresponding frequency domain stability criteria for these works

ar_more restricted than those given in chapter I. Therefore, the

main object of this paper is to develop theorems giving bounds on

the response of systems usin_ the approach employed in the development

of the stability criteria of chapter i. Once a system has been shown

to be asymptotically stable in the large using these criteria, it

will then be possible to calculate a bound on the response using the

results of this chapter.
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The first three theorems deal with those systems in which it

is possible to show stability with x(t) - 0. Theorems 2.4 and 2.5

give bounding expreia_ons for those cases in which x(t) @ 0. Since

for this case a bound must be available on the response of the

system of the form _(t) ! MI_(t) Ima x, where M is a positive number

and l$(t) Imax is the largest value of _(t) in (0, Tn), the application

of these latter two theorems requires somewhat more computation than

the first 3. The bounds for these first five theorems are calculated

using a "completing the square" approach of Aizerman and Gantmacher [13].

Under certain circumstances an improved bound can be found using the approach of

Lefschetz [ii]. This is used in theorem 2.6 and 2.7. Theorem 2.8

gives a bound on the response with an external input applied and

theorem 2.9 considers a special case which arises when dealing with

systems having lag compensators. Finally, the possibility of obtaining

an improved bound when the system is in the linear region is

discussed.

B. The Theorems

Theorem 2.1. For the system of figure i excited by initial conditions

only let the following hold:

a. 0 ! d_(o)/do ! k 2 where k2 is a positive number, $(o) and

(o - _(o)/k 2) = 0 only for o = _(o) = 0, and d_(o)/do be

a continuous function of o.
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b. G(s) - N(s)/D(s) with the degree of N(s) at least

one less than the de_ree of D(s) and with the zeros

of D(s) having negative real parts whose magnitude is

greater than or equal to the positive number _.

c. Re H(Jm) = Re[c(l + Y(J_))(G(J_ - a) + i/k 2) + dJ_ G(J_ - a)

+ adG(Jm - a)] > b > 0

where b, c, and d are positive numbers, y(t) is composed

of delayed impulses and a piecewise continuous function

that satisfies y(t) ! 0 for t > 0, y(t) - 0 for t < 0 and

f
O

ly(t) I eatdt < i (2.1)

Then

°(Tn) -2aT /L2(t)dt o(0)
n o

*(Tn) = / *(oldo ! e [ + / *(oldo ]
o 4d o

(2.2)

where m(t) = F-I [P(Jm) Q(Jm)] with

p(t) = eat[(c + 2ad) oln(t) + d oin(t)] + c(oin(t ) eat * y(t)) n

and Q(Jm) is defined by 1/Re H(Jm) - Q(Jm) Q(-Jm). oin(t) is equal

to the initial condition component of o(t)_ oi(t), in (0, Tn) and

zero outside th_s interval. Similarly, oin(t) il equal to the
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initial condition component of oi(t) in (0, Tn ) and zero elsewhere.

(tin(t) * y(t)) n is equal to oin(t) convolved with y(t) in (0, Tn)

and zero elsewhere.

Proo_..___f.First it is desired to establish the non-negativeness of

certain integrals which play a p_eminent role in the development.

Using integration by parts with o(t) _(t) being integrated gives

T
n

f
O

2at • 2aT n
e a(t) _(t)dt = e _(Tn) - _(0)

T

n 2at
- 2a f e #(t)dt .

O

(2.3)

Also,

T T

n 2at n 2at
2a f e o(t)_(t)dt - 2a f • _(t)dt _ 0 (2.4)

O o

o(t)

since o(t)_(t) and _'(t) are both non-ne_atlve and _(t) = f *(o)do ! o(t)_(t)

o

because of the monotone increasing property of _(o). Adding the first

integral of (2.4) to both sides of (2.3) and rearranging gives

T T
2aT n n

n 2at 2a
e *(T n) + 2a f e a(t),(t)dt - 2a f e t_(t)dt

O O

T T
n 2at

n 2at o(t)_(t)dt + 2a _ e- ]" e
0 0

o(t)_(t)dt + _(0) (2.5)

where the sum of the second and third terms on the left hand side of

(2.5) are non-negative by (2.4).

The second relationship to be established is
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T
n 2at

/ e (on(t) - ,n(t)/k2) ,n(t) dt +
O

T
n

f
O

at _ _ne (y(t) * ((on(t) (t)/k2)eat)) _n(t)dt >_ O. (2.6)

v

Let the impulsive component of y(t) be given by _ cj _(t - dj)
Jfl

where the cj '8 are negative numbers and the dj's positive numbers.

Substituting this component into the second integral on the left of

-adj +ad
(2.6) and insertin_ an e inside the integral and e J outside

gives

T

v adj n 2a(t-dj)

I cje f e
J=l o

(on(t - dj) - _n(t-dj)/k2)_n(t)dt.

(2.7)

With the piecewise continuous component of y(t), y'(t), substituted

into the same integral, the result is

T OO

n

at _nf e (t) f
0 0

y_l)(on(t-l) - _n(t-l)/k 2) ea(t-l)dl dt . (2._)

-aX
InterchanginF the order of integration and inserting an e

+aX
the integration with respect to t and e outside gives

inside

T
n

f y' (1) eal f
0 0

2a(t-l) _ne (on(t-l) - (t-l)/k 2) _n(t)dt d_,

(2.9)

Appearing in both (2.7) and (2.9) is an integral of the form

T

n 2a(t-X)
f e (on(t-X) - _n(t-l)/k2) _n(t)dt where I > 0. This
O

integral may be rewritten as
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= _)/k 2) _(t)dt +

I

I
I

T

n 2a(t-_)f e
O

T

n 2a(t-X)I e
O

(On(t - _) - _n_(t - _)/k2)_b_n(t)dt +

(o_n(t - _) - _n(t - l)/k2_:(_)dt +

I
I

I
I
I

I

I
I

T
n

f e2a(t-X) (O:(t - _) - _+(t - l)/k2)_n_(t)dt • (2.10)
0

The plus subscript indicates that the function possessing it is equal

to the non-subscripted function when the non-subscrlpted function is

positive and zero otherwise. An analogous definition applies to the

use of the negative subscript. For example, _n(t) = _n(t) for _n(t) < 0

and cn(t) = 0 for _n(t) > 0. (2.10) is certainly less than or equal

to the first two integrals of this equation. Applying lemma 2 _iven

in the appendix of this chapter to these two integrals gives that

(2.10) is less than or equal to

T
n

f
O

e2at(o+(t) - _:(t)/k2)_+(t)dt +

T T

i n n 2at
I e2at(°n_ (t) - *n-(t)/k 2) *n-(t)dt = f e (on(t) - ,n(t)/k2)*n(t)dt.

O O

i (2.11)
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Using the positive bound (2.11) in (2.7) and (2.8) gives as

a lower bound for the sum of these integrals

T

v adj = at n
cj e + f e y'(t)dtl fe2a_on(t)-0n(t)/k2)_n(t)dt •

J=l o 0
(2.12)

Using (2.1) and (2.12) in (2.6) shows that (2.6) holds.

At this point the necessary time domain welationships have

been obtained. The next step is to make use of Parseval's Theorem

in convertin_ the time domain integrals into corresponding integrals

in the frequency domain.

Let o_(t) and o$(t) be those components of o(t) and o(t),

respectively, due to the feedback signal -_(t). Then

T T
n 2atn 2at "n

d _ e o (t)_n(t)dt + 2da _ e an(t)_n(t)dt

O O

T

+c f

o

T
n

d /
O

n

eat((6(t) + y(t)) * [(on(t) - _n(t)/k2)eat]) _n(t)dt =

T

n 2at o n(t)_n
2at • n

e o_ (t)_n(t)dt + 2da f e (t)dt
O

+ C

+d

+ C

T
n

f
O

T
n

/
O

T

at
e ((_(t) + y(t)) * [(a_n(t) -_bn(t)/k2)e at] _bn(t)dt

T

n 2at _n
e2at oln(t)_n(t)dt + 2da _ e oin(t) (t)dt

O

f neat ((_(t) + y(t)) * [oln(t) eat]) _n(t)dt •

O

(2.13)
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In the first three integrals on the right hand side of (2.13) let

n*

o_n(t) be replaced by a_

n " n_k. .

(t) and a_ (t) by o_• (t) where

(t) - F-I[-G(J_) F(o_n(t))]

and

• n* F-I
_ (t) = [-J_G(J_) F(o_n(t))] .

In the first two integrals since the starred and unstarred quantities

are equal in (0, Tn) and since _n(t) is zero outside (0, Tn), this

change can be made without altering the values of these integrals.

For the third integral the identical reasoning plus _(t) + _(t)

being zero for t < 0 shows that the substitution can be made in

this case also without changing the value of the integral. A

second desired m_dification is to replace the 0, T limits on all
n

6 of the integrals on the right hand side of (2.13) by -=, ®; once

again this is Justified by the nature of _n(t). This reasoning also

allows the last substitution which is to be made in the third integral,

the replacement of ((_(t) + y(t)) * [oin(t)eat])namely by

((a(t) + y(t)) * [ain(t) ea_ n. The second function is equal to the

first in (0, Tn) and zero elsewhere. With these changes (2.13)

becomes
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-I-oo
2at n 2at _n

d f e _n*(t)_ (t)dt + 2da f e o_n*(t) (ttdt

+ C

+d

/
leo

at n*
((6(t) + y(ttt * [(o_ (t) - _n(t)/k2)eat]t_n(t)dte

2at • n 2at oin(ttsn(ttdtf e o_ (t)_n(t)dt + 2da _ e
--CO l_

n

at [oi n (t) eat ]+ c _ e ((6(t) + y(t)) * ) _n(t)dt . (2.14t

Applying the Parseval Theorem to (2.14) aad using the fact that only

the real parts of the first three integra_ds give a non-zero contribution

to the values of these integrals gives

i
- 2-; /

IGO

Re [d(J_ - at G(Jm - a) + 2da G(Jm - at

+ c [I + Y(Jm)]{G(Jm - a) + i/k2)] lF{_n(tteat)l 2

i +_ t at n÷ _ / Fide at o (it+ 2da e cI (t) +

d_0

i

e ]tn] F(_n(t)e at) d_ .+ c((_(t) + y(t)) * [oin(t) at

Using c, the first integral can be w_ritten as

i 1 _ Re H(J_) tF(_n(tteattl 2 d_

and the second as

F(p(t)) F(_n(tt eatt dm

+m

2_
mal_

(2.15)

(2.1_)

(2.17)
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where the p(t) is defined in the statement of the theorem. Using

the approach given in Aizerman and Gantmacher [13] an upper bound

that can be obtained for (2.15) with (2.16) and (2.17) substituted

into it is

1 +" IF(p(t))12
dm . (2.18)

From the definition of P(J_), Q(J_), and m(t) given in the statement

of the theorem, an application of Parseval's theorem gives for

(2.18)

O0

I f m2(t)dt
4 "

o

Using (2.5) on the left hand side of (2.13) together with the

bound on the right hand side of (2.13) given by (2.19) results

in

(2.19)

T T

2aT n 2at n 2at

de n _(Tn) + 2ad f e a(t)_(t)dt - 2ad f e
O O

T
n

+of
0

_(t)dt

at /k2)eat]_n(t)dte ((_(t) + y(t)) * [(on(t) - _n(t) !

O0

(1/4) f
0

m2(t)dt + d_(O).

Since the sum of the second and third integrals is non-negatlve,

the desired bound

-2aT
n

_(Tn) <__•

f m2(t)dt

[o
4d

+ _(o)]

(2.20)

(2.21)

follows . Q.E.D.
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Theorem 2.2. Let all of the conditions of theorem 2.1 hold and in

addition let ¢(a) he an odd function. Then the assertion of theorem

2.1 holds with y(t) permitted to take on positive as wel] as

negative values.

Proof. The only difference in the proof a_ compared with that of

theorem 2.1 is that in place of (2.6) it is desired to show

T
n

f e2at(on(t) - _n(t)/k2)_n(t) dt -
O

T

I f neat(y(t) * ((°n{ t) -_n(t)/k2)eat))_n(t)dtl > 0

O

(2.22)

To show this, lemma 2 for the odd function came is applied to _ive

T
n

If
O

T
n

f
O

2a(t-x)
e (on(t - I) - _n(t - _)/k2) _n(t)dtl <__

e2at(on(t) - _n(t)/k2) _n(t)dt. (2.23)

Using (2.23) in (2.71 and (2.8) gives

T
n

If
O

at
e (y(tl * ((on(t) - _n(t)/k2) eat)) _n(t)dtl !

v

Z
S=I

adj ®
Icjt e + of

T

early' (t)Idt] fne2a_on(t) - _n(t)/k2)(_n(t)dt •
0

(2.24)
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(2.24) shows that (2.22) holds. The remainder of the proof of

the theorem is unchanged. Q.E.D.

A Simpler Bound From the Computational Standpoint

It is possible to modify (2.2) in order to obtain a simpler

form for computational purposes. As the bound stands, p(t) is

_ m2(t)dtzero for t > T . This means that has to be calculated
n

for each value of T . Rather than using the transform of this
n

truncated p(t) in the development, it is possible to use the

Fourier transform of the untruncated function directly independent

of T • While the original approach should give an improved result
n

for small values of T , the latter approach definitely requires
n

less computational effort which is important in hand calculation.

Theorem 2.3. Let the conditions of either theorem 2.1 or theorem 2.2

hold.

by

Then the assertions of these theorems hold with O(t) replaced

p(t) = eat[(c + 2ad) oi(t) + d oi(t)] + c(oi(t)e at * y(t)).

(2.25)

Proof. ReferrinK to (2.14) it is seen that the change in the

definition of p(t) does not affect the value of the last three

integrals on the right hand side of this equation. Also, since

the new p(t) is Fourier transformable due to G(s) having poles

to the left of s = -a and due to (2.1) holding, it'follows that the

remalnln_ steps in the proof can be carried out without any alteration.

Q.E.D.
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I

Example I. Let G(s) - (s + l)(s + 5)' k2 = 50, and _(o) be a

monotone nonlinearity. It is assumed that this system is excited

by a unit impulse input. The Popov criterion shows that this system

is asymptotically stable in the large. Since the Popov criterion

is applicable, it is reasonable to attempt to satisfy the real

part criterion with Y(J_) = 0. Since the pole of G(s) closest

to the origin is -I, a must be chosen less than i. Let a be chosen

arbitrarily as .5. The real part criterion c is then _wlth c = i

Re [ (i + .5d + dlm)] + .02 • 0 •
(j_+.5)(j_+4.5)

IT d is chosen such that the zero of the term is brackets is located

between the two poles, the real part of the first term will be non-

negative and c is satisfied. Setting d = i gives

(s + 1.5) + .02
H(s) = (s+ .5)(s+ 4.5)

O(J_) obtained by factoring the reciprocal of the real part of H(J_) is

7.07(s + .5)(s + 4.5)
2

s + 14.95 + 13.1

For a unit impulse input oi(t) = .25e _t - .25e -5t and oi(t) = -.25e -t

st • . f (t)dtThen p(t) = e" (2oi(t) + oi(t)) = .25e -'5t + .75e -4"5t m 2
0

evaluated using Parseval's theorem and tables is 1.86. Substituting

this value into the bound expression gives @(t) < .465e -t.

-St
+ 1.25e
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In order to determine the closeness of this bound for a

particular case, let $(c) = 500. Tbls choice gives _(o) = 2502 .

Using the previously established bound results inlo(t) { ! "1365e-'5t.

The actual response of the system with a unit impulse input is

.1475e -3t sin 6.78t which has a maximum magnitude of .081 at t = .17

seconds.

C. Some Considerations in Usln_ the Theorems

At first glance it might appear that the best bound would

be obtained by using tbe largest allowed value of a. However, as

the parameter a is increased, the value of the quantity multiplying

the exponential term in the bound expression will _enerally increase

since the m_nlmum value of the real part of H(Jw) will _et smaller.

With bounds available for d_fferent a's, it is of course possible

to combine them to get an improved overall bound by taking the

smallest bound at a given time.

With regard to the allowed values for a, it has already been

stated in the theorem that a must be less than the ma_nltude of the real

part of the pole of G(J_) closest to the J axis. By considering the

linear case, it is also seen that a must lie to the right of that

portion of the root locus of the system corresponding to the _ain

in the sector (0, k2).
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Once a has been chosen, it is necessary to check the real

part criterion to determine whether it is satisfied. Presumably,

the asymptotic stability of the system will have been demonstrated

so that a candidate for a Y(s) function is available as well as a

value of d/c. It is to be noted that the satisfaction of the real

part condition only depends upon d/c but that the value of the

bound obtained depends upon both these parameters. If the real

part condition is not satisfied for this choice for all _, the

parameters can be altered and a new value of Y(J_) selected. The

required chan_es in the parameters and Y(J_) should be evident

from the first try.

It must always be made certain that f eat I Y(t) Idt < i.

o

A point to note is that the larger the value of a, the more

difficult it is to satisfy the criterion since ad G(J_ - a) has a

larger coefficient and since the area associated with y(t) becomes

less, implying that the maximum phase an_le that can be obtained

from 1 + Y(Jm) is less than 90°:

Using a computer It is possible to obtain an optimum value

for the parameters c and d and for Y(Jm) by selectin_ these

quantities to minimize the function of time or number multiplying

the exponential term in the bound expression. With hand calculation

techniques one would have to be satisfied with a few different

trials for these quantities.
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D. Case of x(t) # 0

If in order to show stability a multiplier is required

which has z(t) - F-I(z(J_)) non-zero for t ! 0, the bounding

inequality becomes more complicated in that the value of

l_n(t) I max, the maximum value of I_n(t) I in the interval (0, Tn) ,

must be used. This result is presented in the next theorem.

Theorem 2.4. For the system of fiRure I excited by initial conditions

let a and b of theorem 2.1 hold and let

c Re H(Jm) - Re[c(l + X(Jm) + Y(Jm))(G(Jm - a) + i/k 2)

+ dJ_G(J_ - a) + ad G(Jm - a)] > b > 0 (2.26)

where b, c, and d are positive numbers, x(t) and y(t) are composed of

delayed impulses and a piecewise continuous function that satisfy

x(t) = 0 for t > 0, y(t) = 0 for t < 0, x(t) ! 0 for t < O, y(t) 5_ 0

for t > 0. The magnitude of the piecewise continuous component of x(t)

is assumed to be less than £ exp (ft) where £ and f are positive

numbers and

f -altl (t) + 1. (2.27)e Ix y(t) ldt •

Then

-2aT
n

_(T n) --•e

f m2(t)dt

[ o 4d + _(0) + M(Tn) l_n(t)12max ]

where re(t) = F-I [P(J_) Q(J_)] _ith
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I at _in(t)p(t) = e [(c + 2ad)oin(t) + d ] +

c [oin(t) e at * (x(t) + y(t))] n

I T
n t

M(T n) ffic f eat f

and Q(Jm) is defined by I/Re H(Jm) - Q(Jm) Q(-Jm).

where _(t) - F-I (G(J_)).

t-_
a(t-X)e I

t-_-T
n

_g(_) IIx(x)IdEdXdt.

Proof: The proof is identical with the proof of theorem 2.1 until

(2.6) isreached. In place of (2,6) it is to be shown that

T
n

f
O

2at
e (on(t) - cn(t)/k2) sn(t)dt +

T
n

f
O

T
n

f
O

at
e [x(t) * ((on(t) - Cn(t)lk2)eat)] cn(t)dt +

at
e [y(t) *((on(t) - cn(t)/k2)eat)] _n(t)dt > 0 . (2.28)

u

Let x(t) = [ a i _(t + b i) + x'(t) where x'(t) is the
i=l

piecewise contlnuous component of x(t). Suhstltuting the impulsive

component of x(t) in the second integral above _ives

T

u ab i n 2at
[ a i e f e

i=l 0
[on(t + h i) - cn(t + bi)/k 2] sn(t)dt

(2.29)
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and substituting the piecewlse continuous component x'(t) into

this same integral gives with a change in the order of i_teRration

T
o n

-a_
f _,(x>e f
--_ O

T

n 2at
Writing out f e

0

e2at[nn(t - _) - cn(t - _)/k2lCn(t)dt d_.

(2.3O)

[on(t-k) - @n(t-x)/k2l @n(t)dt as in

(2.10) gives that this integral is less than or equal to

T

[ n e2at (:I:(t - _)- *_(t- _)/k2)(h:(t)dt +
o

T

n 2at/ e
0

(on(t - X) - cn(t - X)/k 2) ¢n(t)dt • (2.31)

Applying lemma 2 for _ < O then gives that

T

n 2at
I e

o

T

n 2atI e
0

[on( t - l) - @n( t - _)/k 2] ¢n(t)dt !

[on(t) - cn(t)/k2] cn(t)dt . (2.32)

A lower bound on the second and third integrals of (2.28) is then

(2.32) times

u ab i v ad i

t l ale + Z cle + /
i=l J=l -_

(x'(t) e-at +_'(t)e+at)]dt

which shows that (2.28) holds.

!
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Next, let the term

T

e f neat (x(t) * ((on(t) - _n(t)/k2)eat)) _n(t)dt
0

be added to (2.13) and let the substitution be made as before.

A modification is required In the replacement of o_n(t) by

n*

o_ (t) fort he added integral on the right hand side of (2.13).

For this integral it is necessary to take into account the

difference between these two functions due to x(t)'s being

n* n(t ) + o dnon-zero for t < 0. Leto_ (t) = o_ (t). Substituting

for a_n(t) according to this expression then gives the following

two integrals to be added to (2.14)

+_

f eat(x(t) * [(o_n(t) -_n(t)/k2)eat]) _n(t)dt

-c f eat(x(t) * (o_d(t)eat)) _n(t)dt • (2.33)

An added term involving the initial conditiom expressi@n is

c f
Q_

at eat) .e [x(t) * oin(t) _n(t)dt (2.34)

As in the proof of the corresponding stability theorem, the magnitude

of the integral involving odd(t) can be bounded in terms of I_n(t) Imax .

the definition of ..l_n(t)Imax and taking absoluteUsing magnitudes

gives
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/ eat(x(t) * (ocd(t) eat)) on(t) dt !

T
t t-_

c Icn(t) I2ma x of neat / ea(t-x) f
-_ t-_-T

n

Ig(_)llx(X)IdedXdt

= M(Tn) Icn(t) 12max " (2.35)

Repeatin_ the steps in (2.15) through (2.19) then gives for (2.20)

T T

2aT n 2at n 2at
de n ¢(TJ+ 2ad / e o(t)¢(t)dt - 2ad f e ¢(t)dt

o O

+ C

T
n

f
o

at _n cne ((6(t) + x(t) + y(t)) * [(on(t) - (t)/k2)eat]) (t)dt

I _m 2 + (0) + max "<__ _ / (t)dt d¢ M(Tn ) icn(t)[2 (2.36)
O

Then (2.21) becomes

-2aT / m2(t)dt M(T n)

¢(T n) ! e n [ o 4d + ¢(0) + _I¢n(t) I2max].d (2.37)

Q.E.D.

Theorem 2.4 can be applied in the case where ¢(a) is an

odd monotone function with x(t) and y(t) being less restricted.

The proof is similar to that of theorem 2,1 so it will not be repeated

here.

Theorem 2.5. Let all of the conditions of theorem 2.4 hold and in

addition let ¢(_) be an odd function. Then the assertion of theorem 2.4

holds with x(t) and y(t) permitted to take on positive ns well as

negative values
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Although M(Tn) is independent of system excitation as

developed in the proof of the theorem, this is not the case for

I_n(t) Imax . A value must be obtained for this quantity before

the bound can be applied. The simplest way to find this

quantlt_ is by using theorems 2.4 or 2.5 with a = 0. T isn

that value of time at which l_n(t) Imax occurs. Thenchosen as

by using the fact tbat _(T n) approaches infinity more rapidly

than I_(o) I2, a bound can be obtained on I_I by flndin_ the

value of this variable above which the bounding inequality does

no t hold.

E. A Different Bound

The bound (2.2) given by theorem 2.1 as well as the

other bounds obtained thus far depend upon the square of the

initial condition excitation. As lon_ as _(a) is in its linear

range, a reasonable bound is obtained for a. To see this, let

2
_(o) = ClO where cI is a positive number. In the calculation

of the bound for _ a square root must be taken and a is then

effectively bounded by a linear function o6 the initial conditions.

On the other hand if _(o) is in a saturation region,S(a) = c21_ I + c 3,

resulting in the bound dependln_ upon the square of the initial

conditions. To try to get a better estimate in this saturation

case, the approach employed by Lefschetz [ii] will be uged rather than

the "completing the square" approach given in Aizerman and Gantmacher [13]

that has been utilized thus far. The Lefschetz aDproach 71elds a
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bound dependent upon the magnitude of the initial conditions.

Theorem 2.6 Let all of the conditions of either theorems 2.1 or

2.2 hold. Then another bound on #(Tn) is

CO

-2aT fen(t)lmax [ lP(t)Idt
o

_(T n) < e n [ d + @(0)] (2.38)

where

2at
p (t) = e [(c + 2ad) oln(t) + d • n eat [oln(t) eatoi (t)] + c * (y(t))]n

(2.39)

m, 1 i-% ..... 1_ _ J IkFroof. Lne proof i_ ....... xj)unctL_n_u iS this

point, since (2.16) is negative, it can be dropped and the second

integral (2.17) retained. Then, the left hand side of (2.20) is less

than or equal to the magnitude of (2.17) written in time domain form

which is

+_

c f eat((6(t) + y(t)) * [oln(t)eat])n Cn(t)dt +
--00

+_ +_
2at

2at _.n(t ) @n(t)d t + 2da f e oin(t) @n(t)dt (2.40)d [j e
i

The magnitude of this integral is less than or equal to

+_

Icn(t) Imax / Ip(t) Idt • (2.41)

where p(t) is defined above. With the exception of the use of the

new bound, the remainder of the proof is unchanged. Q.E.D.
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In a similar way theorems 2.4 and 2.5 can be restated usimg

this new bound. The modification in the proof is identical to that

given for theorem 2.6.

Theorem 2.7. Let all of the conditions of either theorems 2.4 or

2.5 hold. Then another bound on _(Tn) is

-2aT 10n(t)[max / ]P(t)[dt M(Tn) ]2_(T n) ! e n [ o +-- ]0n(t) + *(0)]
d d max

(2.42)

where

2at
p(t) = e [(c + 2ad) n • n

oi (t) + d oi (t)] +

at eat
c e [oin(t) * (x(t) + y(t))] n (2.43)

and M(Tn) is defined in the statement of theorem 2.4.

Example 2. Consider the same problem as that of example i and let

the nonlinear characteristic be a saturation function defined by

0(o) = 50o for 0 ! ]o] ! .02K and 0(o) = _ K for .02K ! ]o] <

with the + sign applying for positive values of o and the - sign

for negative values. Using (2.39) and the previously computed values

of oi(t) and oi(t) gives p(t) = .25 + .75e -4t.
-T -5T -T

The bound is then

n

O(T n) < K (.25T e - .1875e-- n

The bounds for o are then

-T -ST

]O] < .25 T e n _ .1875e
n

-- n

n + .1875e n) with [0n(t)]max " K.

-T

+ .1875e n + .01K_]o[ > .02K
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-T -5T -T2 n n
o < .04K(.25T e - .1875e + .1875e n) io I < .02K .-- n 1 --

Plots of this bound (called the L bound) and of the bound computedin

example i (called the AGbound) are plotted in figures 7-10 for

various values of the saturation level K. The smaller the value

of K, the better the results of the L bound as comparedwith the

AGbound.

F. A Response Bound With an External Input Applied

at

The introduction of the e multiplier for _(T n) allows a

bound to be obtained for the response of the system with certain

external inputs applied. Theoretically, it is only necessary

to make certain that the input is such that piecewise continuity

and Fourier transformability are guaranteed for certain pertinent

functions. From the practical standpoint some difficulty may be

encountered in finding a bound for l_n(t) Imax in theorems 2.4, 2.5,

2.6, and 2.7. If / Ip(t) Idt is bounded for a = 0, a bound can be
m_

computed as discussed previously; if this integral is not bounded,

it is necessary to calculate a time varying bound for l_n(t) l2
max

using the theorems with a 0 and choosing I_n(t) l2= as occurring
max

at t = T as the worst case. Since I_n(t) I does not appear in
n max

theorems 2.1 and 2.2, these theorems can be applied with no change

in the computation procedure. Examples of possible inputs include

a sinusoidal function, a ramo function and an exponential function.

This discussion is summarized in the following theorem.
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Theorem 2.8. Let the conditions of either theorem 2.1, 2.2, 2.4,

2.5, 2.6, or 2.7 hold. If the input to the system is such that

n(t) and _ n(t) are Fourier transformable,an(t)' _n(t)' _n(t)' ar ' r

the assertions of these theorems hold with ain(t) and _in(t) replaced

by oin(t) + arn(t) and _in(t) + _rn(t) respectively, arn(t) and

n(t) are equal to those components of a(t) and _(t), respectively,
r

due to the direct action of the input (the input acting through G(s))

in (0, Tn) and zero outside this interval.

Example 3. Let G(s) = I/(s + I), k2 = i0, the nonlinearity be monotone,

and the exci ...... b_ -- _...._ ^_ =_ _ w_h the _nitlal conditions

zero. This G(s) is sufficiently simple that theorem i can be

applied with y(t) = 0.

Re H(J_) = Re (c + ad + dj_l + i
j_-a+l " "

Set a = .25, c = i, and d = 2. This then gives ReH(Jm) = 2.1.

ar(t) = .5e -t + .707 cos(t - 135°), _r(t) = -.5e -t - .707 sln(t - 135°),

and p(t) = 2e "25t sin t. Using these quantities then gives as the

bound

_(Tn)._ < .238 - .014 cos 2T - .0561 sin 2T-- n n

-.ST
n

- .2235e < .2959.

For the special case ¢(a) - lOG, using the above bound gives a(T n) ! .243.

The actual response is _(t) = .0082e-°_+ .0905 cos(t - 95.20).
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Example 4. Let the system be the same as in example 3 but let

the input be a unit ramp rather than a sinusoidal input. Or(t) = t-l+e -t,

(t) = I - e-t, p(t) = 2e'25tt, Using these values gives
r

2

_(T n) < 1.91(.25 T - T-- n n

-.5T
n

+ 2) - 3.82e

from which it is seen that the bound approached for large T is
n

2
.4775 T . With _(o) = 10o, this gives as a bound for large T

n n

Iol < .309 T . The actual response for large values of T is
-- n n

o = .0909 T .
n

For both of these examples by referring to [6] - [9] and

treating the inputs as being zero outside (0, Tn) , it can be

shown that the conditions of the theorem are satisfied.

As was pointed out in the introduction, the application of

this theorem can show Liapunov stability with certain inputs

applied. The case of example 3 with the sinusoidal input applied

illustrates this point.

G. Modification For the Case of Poles to The

Left of the Line s = -a

In the case of a system in which a lag compensator has been

incorporated in order to increase the gain of the system at low

frequencies, the significant portions of the response are usually

characterized by one time constant while another time constant due

to the lag compensator characterizes the response for large values

of time. In the theorems discussed thus far, it has been assumed
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that a is less than the magnitude of the real part of the pole

closest to the origin. Therefore, tbese theorems would only

be able to yield a bound that would be realistic for large t.

The theorem below allows the calculation of a bound that should

give good results for the significant portions of the response

of these systems. The approach used is basically one in which the

given G(s) is replaced by another transfer function equal to g(t)

in (0, Tn) but different from g(t) outside this interval. This

modification allows the original theorems to be applied to give

a bound valid in Lh_ _ime interval (0, _ _
_n j,

Theorem 2.9. Let

n ai

c(s) _ Gl(S) + [
i-i s + b i

s G(s) = G2(s) +

n ci
l

i,,l s + di

where a > bi but less than the magnitudes of the real parts of the

poles of Gl(S) and G2(s). Then if conditions a and b are satisfied

and the modified c given below is also satisfied

Re H(jm) ,, Re[c(l + Y(Jm) + X(jm)) (GA(Jm - a) + i/k 2)

+ d GB(J_ - a) + 2ad GA(Jm - a)] > 6 > 0

where X(Jm) may be zero, and
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n

GA(J_ - a) = GI(J_- a) +
i=l

n

GB(Jm - a) = G2(J_ - a) +
i=l

(a_bi)T n -jut

a ill - e e ]

]_ - a+b i

(a_bi) Tn -._mT

ci[l - e e ]

jm- a+b i

the assertions of theorems 2.1, 2.2, and 2.6 hold without any

changes and the assertions of theorems 2.4, 2.5, and 2.7 hold

with the g(E) used in the definition of M(T n) replaced by

gA(_) = F-I [GA(J_ )].

Proof. The only change required in the proof of the theorems is in

the step just before the application of Parseval's theorem by which

the time domain integrals are converted to frequency domain integrals.

o_n*(t) and _n*(t) are redefined as a_n*(t) =-F-I[GA(J_) F(_n(t))]

and a_n*(t) =-F -I• [GB(J_ ) F(_n(t))]. If x(t) = O, these changes

do not alter the values of the integrals in which they appear since

these two time functions are equal to o(t) and a(t), respectively,

in (0, T ). For x(t) # 0, the substitutions result in a different
n

value for o#d(t) but the same steps in the proof are applicable with

g(e) being replaced by gA(C) in the definition of M(Tn). The reason

n*

for the changes is that with the original definitions, n_ (t) and

at
• n*.. when multiplied by e were not Fourier transformable The

new definitions result in Fourier transformable functions when

multiplied by the exponential. The other steps in the proof are

unchanged.
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Example 5. Let G(s) = -l. O05/(s + 2) + I/(s + i) + .005](s + .i)

for a system with a monotone nonlinearity and a gain k 2 = I0. Then

s G(s) -- 2.010/(s + 2) - i/(s + i) - .O005/(s + .I). Let a = .5-- T .
n

This GA(S) is sufficiently simple that theorem 2.1 can be applied

with Y(s) = 0, c = i, and d = i. The real part criterion is then

Re [2 GA(Jm - a) + GB(J_ - a) + .i] =

+.4Tn -j _Tn)i/(j_ + .5) + .0095(i- e e /(J_- .4) + .i.

The maximum magnitude of the second term un u,_= right ..........

is .053. Therefore, Re H(Jm) > .047. For convenience in the

calculation of the lower bound, this number will be used rather

than the actual function of frequency, p(t) = e'5t[2oin(t) ÷ _in(t)]

_St e+ 4te + .0095 " for an impulse input. The bound is then

-T -.2T -2T -I.IT

_(T n) !5"32[i'19e n + .000113 e n _ e n _ .19 e n]

for T < .5. For T > .5, the bound given by the original theorems
n -- n --

can be used with a < .i.

H. A Result for the Linear Case

If _(o) is a linear function or a nonlinear function in its

linear range, it is possible to get an improved result for the

frequency domain condition c. To see this, let _(o) = Ks where

0 < K < ®. Then (2.4) can be replaced by
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T T
n 2at n 2at

a / e o(t) ,(tldt - 2a f e *(tldt >__0

O o

since o(t)_(t) = Ko2(t) and _(t) = Ko2(t)/2. Also, for the

linear case

T
n

/
O

at a(t-_)
e e (on(t-_) - _n(t-X)/k2)_n(t)dt -

K(I - K/k 2)

T

/ neat on(t)e a(t-l)On (t-l)dt <_

0

.SK(I - K/k 2) [

T T

n 2at on2 nf e (t)dt + /

O O

2a(t -
e l'on2_t - l)dt] <

T T

n e2atan2 ( n
K(l - K/k 2) / t)dt = /

O o

e2at(on(t ) - sn(t)/k2) _n(t)dt

which means that the integral magnitude condition can be relaxed.

Combining these tn_o results gives for the frequency domain

condition c

Re H(ju) -

Re[(_ + dj_ + Y(Ju) + X(J_))(G(J_ - a) + i/k2)] _ _ > 0

where / (Ix(t) l + ly(t) l)dt < I.
m_

Because of this improved condit@on, it is possible to choose

larger values of the parameter a for the linear case than for the

nonlinear case. This suggests the following approach. When Io(t)I

is such that the system is in i_s nonlinear region, one of the

bounds already discussed can be claculated. When according • to
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this bound the system is in and remains in the linear region for

all succeeding values of t, say t _ TI, an improved bound is

calculated using the real part criterion given above. In

applying the theorem this second time, a value is immediately

available for _(TI). However, since oi(t) and oi(t) are not

known for this second application of the theorem, bounds for

these two quantities must be calculated using the bound on

_(o) determined in the first application of the theorem.

I. Conclusion

This chapter has presented a number of different results for

bounds on the response of the single nonlinearity time invariant

system. The usefulness of these bounds appears to be in two

applications. First, it is possible to develop an approach for

carrying out an analytical design for a nonlinear system. If the

system is excited by initial conditions or by an impulse or step

input which can be converted to equivalent initial condition

inputs, the theorems given can be used to calculate a bound on

Io(t) l. Since the desired equilibrium state for the excitation

under discussion is the origin, it is possible to obtain a satisfactory

design for the response time of the system by adjusting the parameters

of the system or by adding a compensator such that the bound on

the system output meets the system specifications. Secondly, if a

bounded time varying input is applied to the system, it is possible

to show Liapunov stability by applying the bounding theorems.
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Therefore, the boundin_ theorems give sufficient conditions for

Liapunov stability with a bounded input applied, provided that

no common factors of G(s) in the right half s plane or on the

j_ axis have been cancelled.
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J. Appendix

Lemma i. Let fa(t) and fb(t)__ be two continuous functions of t

that are zero outside the Interval (0, nat) where n is a positive

integer and At is a positive number, fa(t) fb(t) >_ O, fa(t) = h(fb(t))

where h is a piecewise continuous monotone increasing function of

its argument, then if either both fa(t) and fb(t) are always non-

positive, or non-negatlve or if h is an odd function with h(O) = O,

n n

Ifa(kAt) fb (kAt - A)I ! [ fa (k_t) fb (kAt)
k=o k=o

where _ is a real number such that Ill/At is an integer.

Proof. The proof of this lemma follows from the proof of the

lemma given at the end of chapter i in which this result is

obtained as an intermediate step.
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Lemma 2. Let f (t) and fb(t) be two continuous functions of timea

that are zero outside the interval (0, Tn)_ where Tn is a positive

number, fa(t) fb(t) _ 0, fa(t) = h(fb(t)) where h is a piecewise

continuous monotone increasing function of its argument, then if

either both f (t) and fb(t) are always non-positive or non-negativea

or if h is an odd function with h(0) = 0,

T T

n 2a(t-k) n 2at
1 f e fa(t)fb(t-k)dt I _< f e fa(t)fb(t)dt, k > 0

o O

and

r

n 2at n 2at (t)fb(t)dti f e fa(t)fb(t-k)dtl ! I e fa
k 0.<

O o

Proo_____f.Let At be chosen such that [_I/At is a positive integer and n

is the largest integer less than or equal to T /at. It is assumed that
n

< Tn for if I kl > Tn, the assertion of the lemma follows at once.

With % >0, let the two aummations

n

k=o
If (kAt) fb(kAt - k) I e2a(kAt - k)

a
At (AZ)

and

n

X
k=o

be formed.

f (kAt) fb(kAt)e2a(kAtl
a

At (A2)

(AI) divided by At may be rewritten as



_N

[Ifa(_) fb(0)[ + If (%+At) fb(At)l+ If (_+ 2At) fb(2At)l +a a "'"

+ Ifa(Tn-At ) fb(Tn-%-At) I + Ifa(T n) fb(Tn-_)I]

+ (e2aAt - 1) [Ifa(_+At) fb(At) I + Ifa(_+ 2At) fb(2At) I + ...

If ((n-l)At) fb((n-l)&t- _)I + Ifa(n&t) fb(nAt-A)I]a

+ (e4aAt - e2aAt) [Ifa(_+ 2At) fb(2At)] + Ifa(_+3gt) fb(3At) l + ...

I
I

I

I
I

I
I

I
I

[fa((n-l)At) fb((n-l)At-A)l + If (nAt) fb(nAt-%)l]a

+ (e2a(_-At) _ e2a(_-2At)
) [If ((n-l)At) fb((n-l)At-_)l +a

Ifa(nAt) fb (nAt-_) {]

+ (e2al 2a(l-At)
- e ) Ifa(nAt) fb (nAt-%)I. (A3)

Similarly, (A2) divided by At may be rewritten as

[fa(0) fb(0) + f (At) fb(At) + f (2At) fb(2At) +a a "'"

+ fa((n-l) At) fb((n-l)At)+ f (nAt) fb(nAt)]a

2aAt
+ (e

- l)[fa(At) fb (At) + fa (2At) fb(2At) + ... + f (nAt) fb(nAt)]a
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2aAt)+ (e4aAt - e [fa (2At) fb (2At) + fa (3At) fb (3At) + "' fa(nAt) fb(nAt)]

"_ . ee

_ 2a(l-At))+ (e2ak e [fa(%)fb (_) + fa(%+At)fb (l+At) + "" fa(nAt) fb(nSt)]

_ 2a(n-l)At)+ (e2anAt e [fa(nAt) fb(nAt)] • (A4)

Comparing the terms in (A3) and (A4) having the same exponential multiplier

and using lemma i on the terms of (A3), it follows that (A3) is less than

or equal to (A4). Since

T

n 2aCt-_) n

I [ fa(t) fb(t-_) e dt- _
o k=o

f (kAt) fh(kAt-%)Atla

< E(A_)

where E(At) is a positive number whose value depends upon At, taklng the

limit as At ÷ 0 gives

T T

n e2a(t__) n 2at
I f f (t) fb(t-X) dt I _ f fa(t) fb(t) e at.a

o o

which is one half of the lemma.

With % < 0 the summation

n

k-o
Ifa(kAt) fb(k_t-_)le2ak_t At (AS)
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is formed and rewritten as

[Ifa(0) fb(-l)l + Ifa(At) fb(gt-l) l + Ifa(2At) fb(2_t-l) l + ...

Ifa(nAt+l) fb(nAt)l]

+ (e2aAt - l)[If (At) fb(At-%)I + If (2At) fb(2At-%)l + ...a a

Ifa(nA_+l) fb (nAt) l]

+ (e4aAt - e2aAt) [Ifa(2At) fb (2At-%)I + Ifa(3_t) fb(3At-%)l + ...

I_a(nat+k) fb(nAt) I]

ooo

+ (e2a(nAt+%) - e2a((n-l)At+%)) [ifa(nAt+%)fb(nAt)l] (A6)

Repeating the foregoing reasoning with (A6) replacing (A3) gives

T T

n 2at n 2at (t) fh(t)dt .I f e fa (t) fb(t-X)dtl ! f e fa
O O

Q.E.D.
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A. Time Varyin_ Nonlinearity

Tile theorem given below is a modification of theorem 1.2 with

T

the modification added to take into account the / n _(t)_(t)dt term

O

no lon_er being an exact integral. There are a number of ways in

which this could be done; the approach used has the merit that it is

not necessary to take into account the rate at which the nonlinearity

changes with time. Therefore, this theorem appears to be the most

generally applicable one that could be developed.

f .I ..... I__ I.- _--- J_____ r_ol ___Pertinent re erences includ_ L.= wvL_ ,,y .,=_lu_=_ [_j =_

Rekasius and Rowland [19]. The criteria which are developed in these

references do not include anything as general as the Z(s) multiplier

used in theorem 3.1.

Theorem 3.1. For the system of figure I with _ being a time varying

nonlinearity let the following conditions hold:

a. A _m(O)a <_ _(o,t)o < B _m(O)o where A and B are real numbers

2
satisfying 0 < A < I and i <__B < ®, _(O,t) = _m(0) = O, _ _(o,t) < k

where k > 0 and _ _m(O) > 0 for o # O, d_(o,t)/do is a continuous

function of o, _m(O) is a continuous monotone increasing function

of o having an odd part _mo(O) that satlsfies l_m(O)l <__Cl_mo(O) I

and I_mo(O)l <__Diem(O) I.

b. Conditions b and c of theorem I.i.

Then a sufficient condition for asymptotic stability in the large

is that

B-A
Re[Z(j_) G(J_) + E(G(J_) + i/k) - e(_) (k2 + 2) IG(j_)i2] Z _ > 0 (3.1)
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for all real _ where E is a non-negative number,6 is a

positive number, and

Z(Jm) = 1 + _jm + X(Jm) + Y(J_) (3.2)

and

+_
f (x'+(t) + y'+(t))dt + [ al+ + [ cl+1 -

+_
B

(x'-(t) + y'-(t))dt + _ a i + [ ci ] < I (3.3)

where x'+(t) y'+(t) ai+ and cl+, , , are the positive portions or

values of the corresponding non-superscrlpted functions or numbers

and x'-(t), y'-(t), ai , and ci are the negative portions or

values of the correspondin_ non-superscrlpted functions or

numbers. The magnitude of the piecewise continuous component

of x(t) is assumed to be less than £ exp(ft) where Z and f

are positive numbers.

Proof. The proof is Identical with the proof of theorem 1.2 except
Tn

for the handling of the f $(t) _(t)dt term. Because of

O

condition a of the theorem, it is possible to express _(o,t) as

_(o,t) = A_m(O) + _2(o,t) (3.4)

where

1_2(o,t) I _< (B-A) l_bm(O) I _< B-___AAI_(o,t) l (3.5)
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Usin_ this result, it is desired to show that

T T
n

n. B-A

f °(t)*2(°'t)dt + 2-_-- f
o O

[_2(t) + k2 o2(t)]dt > 0. (3.6)

Since

I_(t) _2(o,t) l ! _-__AAl&(t) k o(t) I
A

< "5(B-A) [_2(t ) + k 2 o2(t)] ,
-- A

(3.7)

(1.43) in the proof of theorem 1.2 is replaced by(3.6) holds.

T T
n n

f ((6(t) + x(t) + y(t)) * on(t)) _n(t)dt + _A f in(t) _mn(t)dt

o O

T
n

+_ f
0

T
n

(t)_2(o,t)dt + .5_ (B-A)A f ([_n(t)]
o

T
n

+ E f (_n(t) - _n(t)Ik) _n(t)dt TM

O

2 + [k 2 on(t)]2)dt

T T
n n

f ((6(t) + x(t) + y(t)) * o_n(t)) _n(t)dt + a f o_n(t) _n(t)dt
O O

T T
n n

+ .5a (B-A_A f [&_11(t)]2dt+ "5 B_A A k2 f [_*n(t) 12dt
O o

T
n

+ E f (a_n(t) - _11(t)lk) _n(t)dt +

T o T
n n

,nf ((6(t) + x(t) + y(t)) * _i11(t)) ,n(t)dt + o_ f _in(t) (t)dt
0 o

T T T
n n n n

+ _(B-A) f _in(t) _,n(t)d t + a(B-A) k2 f %n(t)% (tldt + E f _in(t),n(tldtA A
o O O

T n 11

+ _ f [ _in(t)]2dt + .5_(B-A) k 2 TA - A f [s_(t) ]2dr , (3.8)
o O
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j Before applying Parseval's theorem to the integrals on the right
• n

hand side of equation (3.8), the o_n(t) and o_ (t) terms must

I n* n*be replaced by o_ (t) and c_ (t), respectively and the upper

limits on the integrals changed to _. The only new step

i required by T T
is the f n _ n(t)]2dt and f n[o_n(t)]2dt terms.

o o

I Let _d(t) = _n*(t) - _n(t) and _ d = o n*(t) _ o n(t) where

_ d(t ) • n*.. o d(t)is that component of _ (t# outside (O,T n) and is

that component of o_t) outside (0,Tn). Then

f
o

ao Qo

[_ n(t )]2 dt = f [_¢n*(t)]2dt - f [_@d(t)] 2dr
O O

and

(3.9)

n n* d(t)]2dt . (3.10)f [o_ (t)]2dt- f [a_ (t)]2dt- f [o_
O O O

Using the convolution theorem together with straightforward

bounding techniques gives

!
!

l
l
!

t

f [;¢d(t)]2dr < l@n(t)l2 f [ f IF-l(j_C(J_))IdX]2dt
-- max T t-TO

n n (3.11)

and

ol [o_(t)]2dt<__l_n(t)I2max f [ f
T t-T
n n

IF-I(G(S_)) I d_12dt. (3.12)

With (3.9) and (3.10) used on the modified right hand side of

(3.8), the Kizerman and Gantmacher completing the square approach
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together with condition (3.1) gives a bound on all of the integrals

on the modified right hand side except for

ol [x(t) * acd(t)]¢n(t)dt + .5a(B-A)A f [a¢ d(t)]2dt +
0

T

n.5 (B-A)A k2 i [a¢ d(t t + .5a(B-A)A f [ai.n(t)]2dt +
O O

T
n

•5a(B-A) f ]2dtA [ain (t) "
o

(3.13)

Using the result obtained for the first integral of (3.13) in

Chapter I together with (3.11) and (3.12) gives that the left

hand side of (3.8) is less than or equal to

M I + l_n(t) I2 M 2max
(3.14)

where M I and M 2 are positive numbers independent of Tn. Using

(3.6) and (3.7) gives

T
n

/ ((6(t) + x(t) + y(t)) * on(t)) @n(t)dt + _A era(t)
O

< aA _ (0) + M I + l@n(t) 12ma x M 2
-- m

(3.1S)

o(t)

where Cm(t) = f Cm(a)da. The above inequality shows that a(t) is
o Tn

bounded and that f o(t)¢(t)dt is also bounded, thereby demonstrating
o

asymptotic stability in the large. Q.E.D.
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Example 3.1. Let G(s) -- (s +.0001)(s + .05) The problem is
(s + .l)(s + 1) 3 "

to find the characteristics of the time varying nonlinearity

that is permitted if the system is to be asymptotically stable

in the large. G(J_) has a leading phase angle outside the +90 °

band at low frequencies and a lagging angle outside this band

at high frequencies. A convenient choice for Z(s) is (-s+. 05) (s+l) / (-s+. l) .

Z(s) G(s) is then (-s2 + .0025)(s + .O001)/(-sl+ .Ol)(s + 1) 2 , the

real part of which is non-negative for all _. Also, since

Z(s) = s + 1.05 - .055/(-s + .i), both x(t) and y(t) are

+_

non-positlve and f (Ix(t)l + ly(t) I)dt = .524. Therefore, from
m_

(3.3) it follows that B/A < 1.91. Next k is determined by

working with (3.1) with E = 0. The largest allowed value is

k = 2. iO . Therefore, any continuous time varying nonlinearity

with a monotone bounding function _m(_) such that the B/A inequality

is satisfied and having a linear bound with a slope less than

2.10 is permitted. An example of an allowed function is

_(o,t) = po(l + q cos _ot)/(l + Ioi), where 0 < p < i._ and

0 < q < .312. For this case _m(_) = po/(l + Iol).

The next theorem gives a bound on the response for

being a time varying nonlinearity.

J
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Theorem 3.2. For the system of figure i excited by initial

conditions let a and b of theorem 3.1 hold and let

c. Re H(j_) = Re[c(l + dj_ + X(j_) + Y(jw)) G(j_ - a)

+ E(G(jm - a) + l/k) + da G(Jm - a) +

d (B-A) (k2 + a 2 + 2) IG(j m _ a) 12
2A

] > 6 > 0 (3.16)

for all real m where a is a positive number whose magnitude is less

than the magnitude of the real part of the pole of G(s) closest to

the Jm axis and c, d and E are positive numbers, x(t) and y(t) are

composed of delayed impulses and a piecewise continuous function

that satisfies x(t)=0 for t > O, y(t) = 0 for t < 0 and x(t) ! 0 for

t < 0 and y(t) ! 0 for t > 0. The magnitude of the piecewise

continuous component of x(t) is assumed to be less than

exp(ft) where £ and f are positive numbers and

+_ -altl (t) + y(t) Idt < i. (3.17)/ e Ix

-2aT f m2(t)dt M(T n) l*n(t) 12ma x

n [o +Then, _m(Tn) ! e 4dA + _m (0) + dA

o(T n)

where _m(Tn) =
o

R(T n)

dA ] (3.18)

_m(O)do and m(t) - F-I[p(Jm) Q(Jm)] with

at 01n(t) in [oln(t)e atp(t) - e [(c + 2ad + E) + d o (t)] + c * (x(t) +

y(t))] _ _ eat [oin(t ) + k2oin(t)]+ A
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Q(j_) is defined by i/Re H(J_) = Q(j_) Q(-J_),

Tn t t-I
M(Tn) = e f eat f e a(t-_') f

o -_ t-X-T
n

Ig(c)llx(X)IdEdX dt

=o t
2ate t I

A
T t- T
n n

IF-I(J,.G(jm)) I dX]2dt +

t
2at

.5d (B-A) f e [ f
A

T t-T
n n

IF-l(G(Jm) IdX]2dt, and

T

n 2at
R(rn) = _A f e

O

([oin(t)]2 + [cin(t)]2)dt.

Proof. The proof o£ this theorem is similar to that of theorems

1,2, 2.4, and 3.1. A modification required for this ease occurs

T
n

for the f e2at c(t) _(c,t)dt term. It may be rewritten as

O

T T

n 2at • n 2at
f e o(t) ¢(c,t)dt " A f e

0 0

c(t) Cm(O(t))dt +

T

n 2atI e
o

c(t) ¢2 (c, t)dt. (3.18)

Integration by parts gives for the first integral on the right

hand side of (3.19)

2aT Tn

2at (t)dt.
Ae n _m(O) - A _m(C(0)) - 2aA f e _m

O

(3.20)
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The second integral on the right hand side of (3.1q) is less

than

T
n

'_-_/-_ / [$2(t) + k 2 o2(t)]e 2at dt (3.21)
A

O

Using these modifications together with the approaches already

employed gives the proof of the theorem. Q.E.D.

The conditions of the theorems for the time varying

case are a good deal more complicated than their time invarlant

counterparts; there appears to be no way of simplifying these

results and still obtaining improved conditions for asymptotic

stability.
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B. Application to Sampled Data Systems

In this section the techniques of the foregoing work are

used to derive an improved stability criterion for sampled data

systems. To the authors' knowledge, the best results obtained

thus far for the single nonlinearity system are due to

Jury and Lee [20]. Their criterion includes that of Tsypkin [21]

as a special case. For asymptotic stability in the large it

is required that the following relationship be satisfied on

the unit circle:

* K' _ l(z - l)G*(z)l 2 > 0,
Re G (z) [i + q(z - i)] + i/K- 2

where 0 < _(o)_o < K and do < . In the above inequality

(z - i) is analogous to the J_ term in the Popov criterion.

Theorem 3.3 given below permits an entire class of multipliers

to be used.

a. A Theorem for Monotone Nonlinearities

Theorem 3.3. For the system shown in Figure ii let the following

hold:

a. 0 ! d_(o)/do ! k2 where k2 is a positive number, both _(c)

and o - #(o)/k 2 = 0 only for a = _(o) = 0, and d_(o)/do _s

a continuous function of _.

b. G (z) is a rational function of z having all of its poles

inside the unit circle and the corresponding time function

g(i) is zero for i negative. The numerator and the denominator

of G (z) are assumed to have no common factors outside or

on the unit circle in the z plane.
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c. Lim (o- _(o)/k 2) _/I_(o) l2 = ®.

Then a sufficient condition for asymptotic stability in the

large is that

Re [R*(z) (G*(z) + i/k2)] _ 0

for z = ejwT for 0 < _ < 2_ where

(3.22)

R (z) = 1 + X (z) +'Y (z) . (3.23)

The time function x(i) = 0 for i > 0 and ! 0 for i < 0 while

y(i) = 0 for i < 0 and <__0 for i > 0. These functions must

also satisfy

+_

(Ix(1)l+ ly(1)l) < 1. (3.24)

The magnitude of x(i) is less than £ exp (fi) where £ and f

are positive numbers.

Corollary i. In addition to the conditions of theorem 3.3, if

#(o) is an odd monotone nonlinearity, that is, if $(_) =-#(-s),

the assertion of the theorem holds with x(i) and y(i) permitted

to take on positive as well as negative values.

CorollaTy 2. If G (z) has poles on the unit circle, G (z) is

required to be stable in the limit; that is for an arbitrarily

small positive number c, the roots of i + EG (z) must all lie

inside the unit circle. Also, the slope condition becomes

> 6 • 0 where 6 is an arbitrarily small positive number. The

other conditions are unchangedexcept for (3.22) being _ 61 > 0.
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Proo_____f.First it will be shown that

n

I
i=o

_n(i) (on(i) - cn(i)/k2) +

n i

[ _n(i) [

i=o h=-_
[x(h) + y(h)][on(i - h) - _n(i - h)/k 2] -

n

c(n) [
i=o

n(i) (on(i) - #n(i)/k2) (3.25)

where c(n) is a positive number. The second summation on the

left hand side can be rewritten as

n o

I _n(i)l
i=o h=-®

x(h) [on(i- h) - _n(i - h)/k2] +

n oo

[ _n(i) l
i--o h=o

y(h) [on(i - h) - _n(i - h)/k2]. (3.26)

Interchanging the order of surm_ation gives

o n

I _(h> l
h=-oo i=o

_n(i) [on(i - h) - _n(i - h)/k2] +

n

I y(h) l
h=o i=o

n(i) [on(i - h) - +n(i - h)/k2] . (3.27)

n

Rewriting [ _n(i) [on(i - h) - _n(i - h)/k2] in terms of the
i=o

positive and negative components of _n(i) and on(i - h) - _n(i - h)/k 2

and applying lemma i given at the end of Chapter 2 resvlts in
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n

I
i=o

_n(i) [on(i - h) - _n(i - h)/k 2] <_

n

I
i=o

_n(i) [on(i) - _n(i)/k 2 ] (3.28)

Using (3.2_) from the statement of the theorem together with

(3.28) shows that (3.25) holds.

Letting on(i) = o_n(i) + oin(i ) in the left hand side

of (3.25) gives for this side of the equation

n
n

I #n(i)(o% (i) - %n(i)/k 2) +
i=o

n i

l _n(i) l

i=o h=-oo [x(h) + y(h)][o#n(i - h) - _n(i - h)/k2] +

n i

I _n(i) [°in(i) + I [x(h) + y(h)] oin(i - h_
i=o h=-oo

Let osn(i) be replaced by o_n*(i) where

(3.29)

o_ n*(i) = -Z-I[G*(z) z[%n(i)]].

This substitution can be made without changing the values of the

summations in the first two summations of (3.29) emcept for the

term involving x(i). Since x(i) is not zero for i < 0, the value

n*

of o_ (i) for i > n will contribute to the result obtained by
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convolution. Therefore, the summation involving x(i) is

handled separately by making the substitution

n n*(i ) _ o d(i)o_ (i)-%

which gives for the total summation where the limits on i have

been extended to + _,
m

n*

I _n(i) (a_ (i) - _n(i)/k 2) +

+_ i

I _n(i) I
i=-o. h=-oo

[x(h) + y(h)][o_ n* (i - h) - _n(i - h)/k 2]

+_ i

[ sn(i) I

i=-_ h"-_
x(h) o_d(i - ]1) .

i

With o_d(1) = _ g(i-m) _n(m), i >__n, using the exponential
m- i-m

character of g(i) and x(_) as in the proof of theorem, i.I it can

be shown

(3._o)

4-_ i

I l _n (i) 7.

i=-_ h=- - x(h) o_d(i - h) I < MllSn(1) l2-- max
(3.31)

where M I is a positive number independent of n and l_n(i) Imax is the

largest magnitude of sn(i) for 0 ! i _ n. Applying the Liapunov-

Parseval theorem to the first two surmnations of (3.30) gives

z_ /
2_ [i + X*(e jmT) + Y*(eJ_T)][G*(e jmT) + i/k 2 ] Iz[_n(i)][ 2 duT

(3.32)
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where T is the sampling period. Since the imaginary part of the

integrand does not contribute to the final result, (3.32) may

be rewritten as

i--f
2_

--II

Re[l + X*(e j_T) + Y*(eJ_T)][G (ej_T) + i/k 2] Iz[¢n(1)]l 2

(3.33)

dmT

which is non-positive by (3.22). Combining (3.25) with (3.29),

(3.31), and (3.33) gives

c(n)

n

i=o
_nci) conci) - _nci)/k2) <Mll_n(i) 12max +

n i

I _ _n(i) [°in(i) +
iffio h=-_

[x(h) + y(h)] oin(i - h)]l. (3.34)

The second summation on tile right hand side of (3.34) is less than

or equal to

l*n(i)l_ax Y loin(i)+ Y
i=o h=-_

[x(h) + y(h)] oin(i - h) I

- I_n(t)Ima x M2 (3.35)

where M 2 is a positive number independent of n. Using (3.35) in

(3.34) Lives

c(n)

n

F
i=o

_n(i)(on(i) - _n(i)/k2) < Mll_n(1)12-- max + H2 I_n(i) Imax.

(3.36)
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Let n be chosen such that ''lcn(£)Imax occurs at i = n. Using

condition c of the statement of the theorem it follows that

n
o (i) and _n(i) are bounded. Also, since the right hand side

of (3.36) is independent of n, it follows that on(1) and #n(i)

approach zero as i approaches infinity. Because of the assumptions

on G (z), it also follows that the other state variables of

the system are also bounded and approach zero as i + ®. lqlerefore,

the system is asymptotically stable in the large. Q.E.D.

The assertion of corollary i follows from the application

n

of the lemma given at the end of chapter 2 to I _ _n(i)(o_(i-h) -

i=o

#n(i-h)/k2)l to get as a bound on this quantity
n

[ _n(i)(on(i) - _n(1)/k2). The remainder of the proof is
i=o

unchanged.

Corollary 2 follows from the transformation

_(o) = _I(O) +Eo and GI (z) = G (z)/l + EG (z) which results

in a system that satisfies the conditions of the theorem.

An Allowed R (z)

z - z - ch

b I b 2 < b <!0 < aI < < a2 < "'" < an n

dl< d2 < d .i < cI < c2 < "'" < Cm m
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Expansion of this function in a partial fraction expansion

gives where Ai and Bh are positive numbers

Ai Bh

1- II z-al + h_ Z-dh

-i

A. z Bh/d h

1-1 ii i - a. z-I i- zfd h
1

from which it is seen that both x(1) and y(1) are non-posltive.

The total area

ao

[ Ix(i) i + ly(1) i
1 - b i i - c h

" _-_(_--_ _ (_)'_"

Therefore, this function is an allowed one for the general

monotone nonlinearity.

* 3.6 1.2

Example 3.2. Let G (z) ffi_ z - .3 and 0 < k2 < I.

G (z) + i/k 2
z + .3..z + .9)ffi(z---?-__z---r-_

* Z -- .3
Let R (z) =

z+ .3"

Expressing this function in the time domain gives

R (z) = i -.6z -I + 2(.3)2z -2 2(.3)3z "3 + ...

from which it is seen that y(t) takes on both positive and negative

values and that the summation of the magnitude is 6/7. Therefore,

this R (z) may be used with symmetrical monotone nonlinearities.
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R (z) (G (z) + i) : (z + .9)/(z - .9). The angle of this

product on the unit circle is - tan-l(9.48 sin _T). Therefore,

the criterion is satisfied and the system is asymptotically

stable in the large for the given range of k 2.
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C. The Multiple Nonlinearity Problem

Application of the by now standard approach gives the

following theorem for a system having a number of nonlinearities.

Theorem 3.4.

For a continuous system with i nonlinearities let the

following conditions hold:

a. 0 ! d _i(oi)/doi ! k2i where k2i is a positive number,

both _i(oi) and oi - _i(oi)/k2i = 0 only for o i = _i(oi) = O,

and d_i(ol)/do i is a continuous function of

b. The transfer function - Gij(s) relating F(oi(t) ) to

F(_j(t)) is a rational function of s with the number of zeros

at least one less than the number of poles and with all of

the poles in the left half s plane.

°i

c. Lira / ,i(oi)doi/l,i(oi)1 2 - =.
o

loll*

Then a sufficient condition for asymptotic stability in the

large is that the Hermitian matrix H(Jm) be positive semi-

definite where

hll(Jm)

H(J_) = h2{Jm)

hl2(Jm) ......

h22(Jw) ......

hnn (J _o)
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where hii(Jm) = Re Zi(Jm) [(Cii(Jm) + i/k2i) ] and

hij(Jm ) = i [Zi(jm ) Gij(Jm ) + Zj(Jm) Gji(Jm)] for i < J

and hij(Jm) = hji(Jm ) for i > J.

Zi(J_) = i + _iJm + Xi(Jm) + Yi(jm)

where ai is a positive number, xi(t) = 0 for t > 0 and Yi(t) = 0

for t < 0 with both of these functions being non-posltive and

consisting of the sum of a piecewise continuous function which is

Fourier transformable and shifted impulse functions that satisfy

+_

/ (lxi(t) I + lYi(t) l)dt < i.

Corollar_l. In addition to the conditions of theorem i, if

_i(oi) is an odd monotone nonlinearity, the assertion of the

theorem holds with xi(t) and Yi(t) being permitted to take on

positive as well as negative values.

Proof. The proof of this theorem parallels that of theorem i.i

but instead of working with one function there are n functions.

The only variation occurs after applying Parseval's theorem. The

quadratic form that is obtained is associated with a Hermitian matrix

which is required to be positive definite. After applying this

condition, the inequality given below is obtained.
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T
n n

[. ci (Tn) /
i=l o

[o_(t)- _i(t)/k 2] _i(t)dt +

n n n

[ _i _i(Tn) -< [ Mli l*in(t)12ma.+ [
i=l i=l i=l

M2i i_in(t) Imax

n

+ [ _i ¢i (°)"
i=i

The reasoning of theorem i leads to the conclusion that all of

these variables are bounded and approach zero as t ÷ _.

Example 3.3. This example was considered by Ibrahim and

Rekasius [22]. The system consists of two nonlinearities connected

in a single loop with linear elements in between. Gl(S) = I/(s+5)

and G2(s) = (s+l)/(s+2)(s+3). For this case, Gll(S) = G22(s) = O,

Gl2(S) = -i/(s+5) and G21(s) = (s+l)/(s+2)(s+3). The + sign

for G21(s) is due to the feedback being nesative. It im assumed

that both nonlinearities are continuous monotone functions.

ReZIReZ 2

k21 k22

1 Zl(J_)

4 (Jm + 5)

Z26Jm ) (-Jm + i)

(-Jm + 2)(-Jm + 3)

2

> O.

If asymptotic stabilit_ in the large is to be shown for

0 < k21 < _ and 0 < k22 < =, two functions ZI(J_) and Z2(Jm)

must be found such that the quantity inside the magnitude squared

brackets is zero. This requires that

zi(jm) z2(-J_)(-J_ + i)

(Jm+5) (-J_+ 2)(-J,. + 3)
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Let z2CJ0_ = (-I_ + l)(j_ + 37 = j_ + 4 5(-j_ + 2) -j_+ 2
and

(_,,,+ 5)(-_ + i)(.i_+ i)
Zl_J_J'_" = (-J_ + 2)(J_ + 2)

m J_ + 5

_9 21
4 4

Jm+ 2 -Jo_ + 7.

A check of the integral magnitude condition for these two

functions reveals that they are allowed functions for general

monotone nonlinear£ties. Substitution of these expressions

gives ( 2 + 1)/( 2 + _) on both sides of the equation. There-

fore, it has been shown that the given system is asymptotically

stable in the large for monotone nonlinearities having

arbitrarily large slopes. In [22], asymptotic stability

i was shown for k21 = k22 = 6.

I

I

I

This chapter has applied the method of chapters i and 2

to get improved theorems for a time varying nonlinearity, for a

sampled data system, and for a system with a number of nonlinearities.

In order to show how useful these theorems are, it will be necessary

to consider a number of different examples for each case.
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Vl. CON CLUS ION

From the conclusions given at the end of each chapter it

is apparent that additional research in the area of time-frequency

domain stability criteria should be worth-while. In particular, the

problem of the closeness of the stability results to the actual

absolute stability boundary is an important one for future study.
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